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Abstract
A key factor in initiating and operating the immune system against tumour cells, the dendritic cell (DC) has been regarded as the next

possible breakthrough in new cancer therapy. However, the results of more than 15 years of clinical studies with DC vaccine revealed

the difficulties fulfilling this expectation. Evidence has disclosed that the DC activation required for proper tumour-specific effector CD4+

and CD8+ T cell stimulation is inhibited in the micro-environment of tumour. Studies have further reported that DC phenotypes in tumour

tissue and draining lymph nodes are mostly immature, which results in regulatory immune responses. Also, the existence of MDSCs and

TAMs adversely affect both DC function and immune suppression in the cancer-environment. In this review, efforts to overcome the

tumour or host-dependent hindering which inhibit the effect of cancer vaccine will be discussed. The combination therapy of cancer with

DC vaccine and other immune modulators may improve the clinical efficacy.
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The role of the dendritic cell (DC) is at the centre of the immune

system by initiating, progressing and regulating the responses 

against pathogens, include tumours. After the first successful clinical

achievement in DC-based immunotherapy trials in follicular

lymphoma and melanoma in the mid-1990s,1,2 the DC vaccine used to

treat patients with cancer such as melanoma, lymphoma and renal

cell carcinoma.3–7 However clinical expectations have not been fulfilled

due to an overall clinical response rates of under 10–15 %, the usual

response rates observed in various types of immunotherapies.6–11 The

meta analysis performed with 906 prostate and renal cell cancer (RCC)

patients in 29 separate DC vaccine clinical trials revealed the objective

response rates, 7.7 % in prostate cancer and 12.7 % in RCC.12

If the stable disease rate was combined as clinical benefit rate (CBR),

much better response rate was counted (54 % in prostate cancer and

48 % in RCC). Although the clinical expectation has not been satisfied,

the outcomes of many clinical trials with tumour antigen-loaded

conventional DCs have provided proof that therapeutic immunity 

can be elicited.13–15 And statistically significant effect of DC-mediated

cellular immune response and of DC dose on CBR was proved in

meta-analysis.12 The clinical data has helped to establish a standard

for properly activated DCs with appropriate form and doses of loading

antigens.These activated DCs can migrate to the lymph nodes which then

initiate and expand tumour-specific CD4+ and CD8+ T cell responses and

later induce meaningful therapeutic responses in patients.

Several mechanisms involved in unsatisfactory anti-tumour responses

of DC vaccine in the clinic. Mechanisms include; the presence of

suppressive leukocytes like myeloid derived suppressor cells

(MDSCs), tumour associated macrophages (TAMs) with or without 

the presence of constitutive p-STAT3 signalling, immunoediting,

abnormal tumour vasculature inhibiting effector T cell entry or tumour

cell interaction with the stromal environment.15–20 On the other hand,

in order to improve the DC vaccine clinical efficacy, it is critical to

control the therapeutic DC quality and standardise the vaccine design

and protocol. Looking at this very view, several investigators have

analysed DC vaccine problems in their publications.4,6,13,15,21–23 One of

the efforts is using allogeneic cells, since the DCs isolated from

cancer patients express impaired characters for generation of the

tumour-specific immunity.24 Thus, without further discussing about

the DC vaccine quality, tumour tissue or host side hindering factors

and the possibility of improving antitumour immune-therapeutic

efficacy will be discussed in this review. 

Dendritic Cells in Cancer Patients
DCs are lymphocytes in the immune system which control overall

immunity by interacting with other immune cells, including T cell, 

B cell and natural killer (NK) cells.6,25–26 DCs themselves are a

complicated system consisting of various anatomic localisations,

subsets and functions that are correlated with one another. DCs

control the immune system, not only in stimulatory but also in

regulatory immunity as professional APC.23,25 In cancer tissues or

cancer-draining lymph nodes, DCs are found as resting, non-activated

and immature cells.27–31 Tumour-induced immunosuppressive milieu

generally causes a decrease in the numbers of conventional myeloid

DCs in patients.27 In rodent models, immature myeloid DCs promote

the expansion of regulatory T cells (Treg) in tumour-draining lymph
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nodes, which are associated with tumour progression in a 

TGF-β dependent fashion. Immunosuppressive factors, mostly 

pro-inflammatory molecules from the tumour micro-environment,

target endogenous DCs in patients, resulting in dysfunction and

impaired development of tumour-specific effector lymphocytes.32–33

Typical inflammatory mediators of tumour-induced DC dysfunctions

include; IL-10, TGF-, VEGF, IL-6 and prostanoids such as PGE2-634-37.

These mediators are produced from either the tumour itself or the

infiltrated host factors including MDSCs and TAMs. In this milieu, DCs

are having trouble maturing, expressing the co-stimulatory molecules

needed for T cell activation, and producing the cytokines needed to

support tumour specific effector T cell activation and survival.38-41

Tumour-related malfunctions of DCs are noted in patients with

ovarian, breast, melanoma, renal cell, prostate carcinoma42–45 and 

in the blood of head and neck, lung and breast cancer patients.38,46

The major intracellular signalling pathway required for DC activation

and final maturation in the immunosuppressive milieu of the 

tumour micro-environment is STAT3.47 Oncogene or cytokine-induced

over-expression of the STAT3 protein in tumour cells up-regulates the

expression of several immunosuppressive cytokines, including IL-10

and TGF-β, and suppresses Th1 cell immune responses.16,48–49 STAT3

expression from cancer cells leads to STAT3 production by a variety

of leukocytes, including DCs. STAT3 expression in tumour-associated

DCs causes reduced expression of co-stimulatory and MHC II

molecules, and correlates with an accumulation of immature 

DCs, which may induce Treg,50 an inhibitor of effector T cell function. 

Anti-tumour effects of the STAT3 inhibitor, cucurbitacin I was

observed in mice.51–52 Although dysfunctional tumour-associated 

DCs may support immune suppression and promote oncogenesis, 

it may be possible to evoke therapeutic antitumour activity in 

these DCs by molecularly defined triggers of DC maturation, causing

induction of tumour-specific effector T cells.

Inflammatory Nature of Tumour 
Micro-environment
The development of about 15–20 % of malignancies worldwide are known

to be related to chronic inflammation, including oesophageal, gastric,

hepatic, pancreatic and colorectal cancer.53 Inflammatory mediators

produced by the tumour cell can create an inflammatory 

micro-environment and cause both leukocyte recruitment and

angiogenesis.54–56 Also, these inflammatory milieus can help tumour

cell survival, motility and chemotaxis. For example, breast cancer cells

are known to produce the inflammatory chemokines CCL2 and CCL5,

which are poorly expressed in normal breast cells. These chemokines

recruit TAMS and inhibit potential antitumour effector T cells.57 In other

words, the immunosuppressive tumour micro-environment is created

by the inflammatory nature of tumours and an infiltration of assorted

leukocytes, in particular MDSCs and TAMs. This infiltration leads to

the suppression of the DC-induced effectors, CD4+ and CD8+ T cell

responses and the induction of Treg.27

MDSCs in the Tumour Micro-environment
The mechanisms which chronic inflammation promotes the onset and

development of tumours are differentiated into non-immunological

and immunological ways.58 The non-immune mechanisms include:

1) the production of reactive oxygen species which cause DNA

mutation, 2) the production of pro-angiogenic factors, like VEGF which

promote tumour neo-vascularisation 3) the production of matrix

metalloproteases which facilitate invasion and metastasis.59–61 The

predominant immune mechanism is the disturbance of myelopoiesis

and haemopoiesis, which causes a deficiency in APCs and in

dysfunctional cell-mediated anti-tumour immunity. One of the

important parameter in this deficiency is MDSC.27 In individuals with

an established tumour, MDSCs are known to prevent the efficacy of

cancer vaccines.62 In most patients and experimental mice tumour

settings, the accumulation of MDSCs in the blood, lymph nodes, 

bone marrow and tumour sites is observed. These cells are known 

to inhibit both adoptive and innate immunity. MDSC induction and

recruitment into the tumour site is mediated by tumour-secreted 

and host-secreted factors, many of which are pro-inflammatory

molecules. Thus it may be said that inflammation promotes the

accumulation of MDSCs, which down-regulate immune surveillance

and anti-tumour immunity, thereby facilitating tumour growth.58

Recently, the clinical perspective of MDSCs in cancer patients are

reviewed elsewhere.63 Identification of MDSCs in cancer patients and

experimental mice were analysed by the activity of T cell suppression.

In mice, MDSCs are characterised as Gr1+CD11b+ expressing cells.

Gr1 includes Ly6C, a macrophage marker and Ly6G, a neutrophil

marker. CD11b is the characteristic marker of macrophage.58 In 

some subsets of MDSCs, several markers are ascribed, including 

the IL-4 and IL-13 receptor alpha chain (IL-4Ra),64,65 F4/80, a macrophage

marker,64,66,67 c-fms(CD115),67 and CD80.68 Among the MDSCs,

mononuclear cells are defined as ‘monocytic’ CD11b+Ly6G+/-Ly6Chigh,

whereas ‘granulocytic/ neutrophil-like’ multi-lobed nuclei possessing

cells are characterised by CD11b+Ly6G+Ly6Clow.66,69,70 Immunosuppressive

substances produced from MDSCs include arginase, inducible NO

synthase, and/or ROS.71–75 Unlike mice, MDSC characterisation in cancer

patients is complicated but typically characterised by the phenotype

CD11b+CD33+CD34+CD14-HLA-DR- with various expressions of CD15

and other markers. Recent findings have identified CD14+HLA-DR/low

as a new MDSC subtype in melanoma and hepatoma patients.76,79 It is

known that different tumours induce different subtypes of MDSCs 

in cancer patients.76,77 Along with heterogeneity characterised by the

surface phenotype, internal markers, morphology and suppressive

substances in both mice and humans, MDSCs suppressed multiple

immune effectors include; inhibition of CD4+ and CD8+ T cell

functions,80–83 induction of Treg by secreting TGF-β, IL-10 or arginase,67

interaction with NKT cells to enhance tumour growth by suppressing

antitumour immunity.84

Improvement of Clinical Efficacy of the
Dendritic Cells Vaccine
Considering the inflammatory tumour micro-environment and

dysfunctional DCs with suppressed-immunity in cancer patients, it is

not surprising to see recent reports indicating that the cancer vaccine

induced tumour-specific T cells is not necessarily associated with 

the induction of functional cytotoxic T lymphocytes, but instead leading 

to the undesirable activation and expansion of regulatory T cells.15

Tumour antigen-induced immune responses are weak or ineffective,

because unlike infectious pathogens, tumours do not induce the

strong enough inflammatory responses for the optimal activation of

DCs. Thus, the primary purpose of a cancer vaccine is to overcome this

defect by educating DCs with a stronger antigenic signal and providing

optimal conditions for the maturation into potent immune-stimulatory

APCs.23 In the immunosuppressive milieu of cancer patients, sufficient

numbers of properly activated tumour-specific Th1 cells and CTLs 

are not generated despite ample expression of tumour-associated

antigens in cancers. The effects of therapeutic cancer vaccines,

including DC based therapy, can be enhanced by combination with

the methods that overcome the immune-suppression associated 
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with tumour cells. Then the generation of large numbers of high

avidity antigen-specific effector CD8+ T cell can be expected. Such

therapies target either tumour cells, Tregs or DC and even effector 

cell itself then over-ride the immune-suppressive milieu of the

tumour-bearing host.13 Among potential combination methods,

therapeutic antibodies are differentiated into two functional groups:

one is the antibody which is blocking the suppressive cytokines 

(IL-10, IL-13, TGF-b, VEGF) or inhibitory co-stimulatory molecules 

(PD-1, CTLA-4), the other is the agonistic antibody which is further

promoting co-stimulation between the antigen presenting cells and

activated effector T cells such as anti-CD137 (4-1BB signal). The

author’s experience85 with DC vaccine and agonistic anti 4-1BB Ab

combination against mouse liver metastatic colon cancer confirmed the

synergistic anti-tumour effect. 

Another candidate, cytokine has complicated effects. Cytokines work 

on the DCs as well as lymphocytes and tumour cells but also secreted

by those cells and manipulate the immune responses. Combinatorial

administration of cytokines like IL-2, IL-12, GM-CSF with DC vaccine

improved the anti-tumour effect. Those cytokines may promote the 

DC vaccine activity by inducing the survival, migration, activity of

lymphocytes as well as DCs. Reported clinical study with DC vaccine

combined with IL-2 and IFN-α for RCC observed the improved 

anti-tumour effects.86 The possible mechanism of IL-2 might the

correction of the T cell receptor signalling defects in cancer patients.

IFN-α suggested to induce the MHC molecule and tumour-associated

antigen expression, thus enhanced the tumour immunogenicity.86

The clinical and immunological result of combination therapy of RCC and

breast cancer with CD34+-haematopoietic stem cell derived DC vaccine

and IL-2 was reported by author.87 Clinical response was observed in 

one RCC patient as stable disease. However, DC-vaccine related

antigen-specific immune responses including peripheral blood

lymphocyte proliferation and the number of IFN-γ secreting cells were

induced in six patients without clear correlation with clinical responses.

Also NK activity was induced significantly in six patients after

vaccination. DC vaccine-related decrease of TGF-β level or increase of

IL-12p70 level and decline of CD4+CD25+ T cells were observed in three

patients. However only in the RCC patient whose disease stabilised,

concomitant immune alterations including induction of IFN-γ secreting T

cell and reduction of CD4+CD25+ T cell were correlated with clinical

responses. However, it has been reported that the expansion of Treg in

DC vaccine and IL-2 combination protocol.88,89 Although it is not

conclusive whether the induced Treg directly inhibit the anti-tumour

efficacy of DC vaccine, the immune suppressive condition needs to be

controlled to achieve the better clinical anti-tumour results. 

Generally chemotherapeutics kill the rapid proliferating cells including

tumour cells as well as bone marrow stem cells which are the cause of

immune-suppression in treated patients. High dose cyclophosphamide,

a chemotherapeutics, inhibits T cell function and anthracyclines affect

the macrophages. On the other hand, low dose cyclophosphamide

induces the immunity. Doxorubicin did not inhibit but induce

macrophage-related anti-tumour activity in vivo. This data90–91 provides

the immunological rationale for testing immune-modulating doses 

of chemotherapy in combination with tumour vaccines in patients 

with cancer. Limited number of recent papers including the reports 

from Zitvogel group92 determined the contribution of conventional

chemotherapeutics in anti-tumour immunity. Chemotherapeutics like

anthracyclines or radiotherapy can induce the immunological death 

of tumour cell and/or stimulate the immune system as a side effect.

Thus the anti-tumour immunity can be induced and activated by the 

DC antigen uptake of dead tumour cells. 

Reports of the author93 proved the chemical-induced immunogenic

tumour cell death and the increased DC uptake of them. This

immunogenic dead tumour cells also secrete the cytokines that may

convert the tumour micro-environment from the immune-suppressive to

immune-stimulatory.These data suggest the new combinatorial protocol

for cancer immunotherapy with DC vaccine and chemotherapeutics.94-96

Drugs other than conventional chemotherapeutics, non-steroid 

anti-inflammatory agents like COX-2 inhibitors are also considered 

as a helper of anti-cancer activity. By altering inflammatory condition 

of tumour micro-environment, COX-2 inhibitor may improve the 

anti-tumour immunity of infiltrated effector T cells.97 Conclusively,

correcting the immunological balance in the tumour micro-environment

from suppression to a tumour-rejecting condition may be the key factor

in succeeding with a DC vaccine clinical trial. n
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