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Abstract
The anaplastic lymphoma kinase (ALK) is a receptor with tyrosine kinase activity, which regulates the development and maintenance of the 

nervous system. Mutations or amplification in ALK promote tumorogenesis and progression of diverse types of cancer, which makes it an 

attractive therapeutic target against cancer diseases. Inhibition of its tyrosine kinase activity with small molecules, such as crizotinib, reveals 

tumor reversion; however, secondary mutations and amplification of the gene mediate resistance to treatment. In this article, we discuss the 

emerging role of possible therapeutic targets that could overcome the resistance to ALK inhibition in cancer, such as inhibition of other kinases 

involved in the pathway, inhibition of ALK mutant proteins through the development of new drugs based on its crystallography, and the use of 

antibodies against ALK. 
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Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) 

belonging to the insulin receptor superfamily. The ALK gene is located on 

the short arm of chromosome 2 and was first identified as an oncogene 

activated by chromosomal translocation t(2;5)(p23;q35) in anaplastic large 

cell lymphoma (ALCL) patients.1,2 ALK is normally expressed only in the 

nervous system. Analysis of in situ hybridization of ALK messenger RNA 

(mRNA) in mice showed that ALK is predominantly expressed in specific 

regions of the nervous system, such as the thalamus and midbrain, 

suggesting that ALK plays an important role in the development and 

maintenance of the central and peripheral nervous systems.3 Constitutive 

activation of ALK, derived from chromosomal rearrangements, mutations, 

or amplification of the ALK gene, has been linked to tumorigenesis and 

progression of certain cancers such as non-small cell lung carcinoma 

(NSCLC), breast cancer, and neuroblastoma.4–7 In this article, we discuss 

the recent advances in the understanding of resistance to ALK, and 

possible therapeutic targets that overcome this resistance.

Structure of the Anaplastic Lymphoma  
Kinase Receptor
The human ALK gene encodes a 176 kDa protein, which undergoes post-

translational modifications, such as N-glycosylation, altering its migration 

at approximately 220 kDa on SDS/PAGE.3,8 The ALK receptor is a single-

pass transmembrane protein that consists of an extracellular region 

of 1,030 amino acids (aa), containing an N-terminal signal peptide, two 

meprin, A-5 protein, receptor protein tyrosine phosphatase mu (MAM) 

domains separated by a low-density lipoprotein class A (LDL-A) domain, 

and a glycine-rich region proximal to the transmembrane domain that 

connects the extracellular region with the intracellular region. The MAM 

domains of this receptor consist of approximately 160 aa, and are thought 

to participate in cell–cell interactions,9 whereas the function of the LDL-A 

domain is still unknown; however, it has been proposed to be involved in 

ligand recognition.10 The intracellular region contains a juxtamembrane 

domain and a tyrosine kinase domain. The juxtamembrane domain 

function in this receptor is still unknown; however, in other receptors, 

it functions as a modulator of the kinase catalytic activity.11 The kinase 

domain contains three autophosphorylation sites in tyrosine residues 

1278, 1282, and 1283, known as the YXXXYY motif, whose phosphorylation 

regulates the kinase activity of ALK (see Figure 1A).12,13

Ligands of Anaplastic Lymphoma Kinase
Midkine (MK) and pleiotrophin (PTN) are growth factors considered 

as putative endogenous ALK ligands capable of acting as autocrine/

paracrine signaling molecules.14,15 MK and PTN are expressed during 

development of the nervous system and are highly expressed in some 

cancers where they act as angiogenic factors that drive invasion and 

metastasis.16,17 MK is a heparin-binding growth factor with a molecular 

weight of 13 kDa that regulates development of lung, kidney, bone, and 

nervous systems.18 Stoica and co-workers report that MK stimulates ALK 

phosphorylation and activates phosphatidylinositol 3-kinase (PI3K) and 

MAP kinase signal transduction.14 PTN is a 18 kDa protein that acts as a 

growth factor, regulating neurite outgrowth and proliferation of fibroblasts 

and endothelial cells.17 Stoica and co-workers report that PTN binds to the 
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extracellular region of ALK, inducing its phosphorylation and activating 

downstream effectors, such as PI3K (see Figure 1B).15

Anaplastic Lymphoma Kinase Signaling
ALK signal transduction is initiated by binding its ligand, which triggers 

dimerization and transphosphorylation. Following activation by the ligand, 

ALK leads to cellular processes involved in oncogenesis. The ALK receptor 

induces activation of multiple signal transduction pathways. The main 

pathways activated by ALK are Ras/ERK, JAK/STAT, and PI3K/AKT, which are 

involved in proliferation, migration, and cell survival (see Figure 1B). 

The RAS/ERK Pathway
The extracellular signal-regulated kinase (ERK) controls fundamental 

cellular processes such as differentiation, proliferation, and migration. ERK 

signaling is activated by numerous extracellular signals, such as growth 

factors.19 Stimulation of RTK, such as ALK,20 promotes the exchange of 

GDP for GTP in the Ras GTPase, which, in turn, recruits Raf kinase to 

the plasma membrane for its activation.21 Raf kinase activates MEK by 

its phosphorylation on two serine residues. Active MEK phosphorylates 

ERK in threonine and tyrosine residues, phosphorylated ERK translocates 

to the nucleus to modulate gene expression through phosphorylation of 

transcription factors (see Figure 1B).22

The JAK/STAT Pathway
Signal transducers and activator of transcription (STAT) are a family of 

latent cytoplasmic transcription factors activated in most cases by growth 

factor receptors, such as ALK.23,24 The STATs regulate various processes 

leading to oncogenesis, including angiogenesis, as well as proliferation 

and survival by regulating the expression of a variety of genes.25 The 

Janus protein tyrosine kinases (JAKs) are enzymes that mediate activation 

of STATs in response to growth factors. Stimulation of growth factor 

receptors promotes activation of JAK through trans-phosphorylation 

mechanisms. Once activated, JAK phosphorylates to STATs in conserved 

tyrosine residues, resulting in their dimerization and translocation to the 

nucleus, where STAT dimers modulate expression of their target genes 

involved in proliferation and survival (see Figure 1B).26

The PI3K/AKT Pathway
PI3K is a lipid kinase that is activated by RTK such as ALK.27,28 PI3K 

generates phosphatidylinositol-3,4,5-trisphosphate second messenger 

that recruits proteins with the pleckstrin homology domain (PH domain) to 

the plasma membrane. AKT is a serine/threonine kinase with PH domain 

that plays a vital role in multiple cellular processes, such as proliferation, 

migration, and survival.29 AKT is activated by phosphorylation on two 

sites, threonine 308 and serine 473, by the phosphoinositide-dependent 

kinase (PDK1) and the hypothetical PDK2 kinase, respectively.30 Activated 

AKT can phosphorylate numerous downstream substrates involved in 

proliferation and survival (see Figure 1B).31

Anaplastic Lymphoma Kinase as Oncogene 
Since the identification of ALK as an oncogene in ALCL, aberrant 

signaling of ALK in several types of cancer has been reported. This 

aberrant signaling is associated to chromosomal rearrangements, 

mutations, or amplification of the ALK gene, leading to a constitutive 

activation of ALK and phosphorylation of downstream effectors involved 

in tumorigenesis.

The Role of the Anaplastic Lymphoma Kinase 
Fusion Protein in Cancer
Chromosomal rearrangements are the most common genetic alterations 

of the ALK gene that generate fusion proteins. The main features of the 

ALK fusion proteins are that all retain the intracellular region of ALK, which 

contains the tyrosine kinase domain, whereas the extracellular region, 

which contains the ligand-binding site, is replaced by the dimerization 

domain of the partner protein, the presence of this dimerization domain 

promotes transphosphorylation of the kinase domains independently of 

the ligand.32

Lymphoid Cancer 
Lymphomas are a type of cancer arising from cells of the immune and 

lymphatic systems, and they represent 5.3 % of all cancers and are the 

sixth most-common cause of cancer death in the US affecting children 

and young adults.33

 

The nucleophosmin-ALK (NPM-ALK) is a fusion protein derived from the 

t(2;5) (p23;q35) translocation, and approximately 60 % of anaplastic large-

cell lymphoma (ALCL) cases are associated with these rearrangements that 

generate a constitutively active tyrosine kinase (see Table 1).2,34 Although the 

molecular mechanisms of NPM-ALK-mediated oncogenesis are incompletely 

understood, a recent report shows that NPM-ALK promotes survival and cell 

proliferation through activation of the PI3K-AKT pathway. In this report, it is 

demonstrated that FOXO3, known as an AKT substrate, regulates survival 
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Figure 1: Structure and Activation of Anaplastic 
Lymphoma Kinase

A. The extracellular region contains a signal peptide (Sig P)—two meprin, A-5 protein, 
receptor protein tyrosine phosphatase mu (MAM) domains; one low-density lipoprotein 
(LDL) domain. The transmembrane domain (TM) connects the extracellular and 
intracellular regions. The intracellular region contains the juxtamembrane domain and 
the tyrosine kinase catalytic domain, which contain three tyrosine phosphorylation sites 
necessary for activation. B. The binding of ligands to receptor leads to the activation of 
the tyrosine kinase domain, and concomitant activation of multiple signaling pathways 
that regulate cellular processes such proliferation and cell survival.
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and proliferation in NPM-ALK-overexpressing cells, where phosphorylation 

of FOXO3 by AKT promotes their exclusion from the nucleus, preventing the 

expression of proapoptotic genes and cell cycle inhibitors such as Bim-1 and 

p27.35 Another type of blood cancer associated with NPM-ALK fusion protein 

is the diffuse large B-cell lymphoma (DLBCL), where patients diagnosed 

with ALK-positive DLBCL have a poor prognosis.36,37 Another fusion protein 

expressed in ALCL is tropomyosin 3 (TPM3-ALK), which is derived from the 

t(1;2) (q25;p23) translocation (see Table 1). The hybrid protein TPM3-ALK 

promotes constitutively activation of the kinase domain of ALK, probably 

through the TPM3 protein–protein interaction domain.38

Lung Cancer
Recently, deregulation of the ALK signaling pathway has been described in 

many types of nonlymphoid tumors.39 Lung cancers are the most common 

cause of cancer in the world, and approximately 85 % of these tumors 

are represented by NSCLC.40 In 2007, echinoderm microtubule-associated 

protein-like 4-ALK (EML4-ALK) was reported as a novel fusion protein found 

in a subset of patients with NSCLC. EML4-ALK is the result of the inversion 

on the short-arm chromosome 2 [Inv(2) (p21;p23)] that binds with exons 

1–13 of EML4 to exons 20–29 of ALK (see Table 1).4 A recent study indicates 

that inhibition of the STAT3 and ERK pathways in EML4-ALK-positive cells 

promotes apoptosis by downregulation of the antiapoptotic protein survivin 

and upregulation of the proapoptotic protein Bim.41

Breast cancer is a type of cancer arising from the breast tissue and 

is the primary cause of cancer death in women worldwide. In tumor 

samples from patients with breast cancer, the presence of EML4-ALK 

transcripts has been reported in approximately 2 % of the total samples; 

these results were confirmed by fluorescence in situ hybridization (FISH) 

analysis.5 In support of the hypothesis that aberrant ALK signaling is 

involved in breast cancer progression, studies show that supernatants 

of the human breast cancer cell line (MDA-MB-231) contain the 

putative endogenous ligand of ALK (PTN) and that this ligand stimulates 

proliferation of endothelial cells.42 These data suggest an important role 

of wild-type ALK receptor on this disease. In contrast to previous data, 

a more recent study suggests that EML4-ALK fusion transcripts are not 

present in breast cancer samples.43

The Role of Wild-type Anaplastic Lymphoma Kinase 
Receptor in Neural Cancer
The neuroblastoma is an embryonal tumor, derived from neural crest 

cells and is the most common extracranial solid tumor in early childhood. 

Many neuroblastomas are incurable with poor prognosis, and these 

diseases account for 10  % of all pediatric cancer deaths.44 ALK is 

overexpressed in neuroblastoma tumors and neuroblastoma cell lines as 

a result of gene amplification.45,46 ALK is amplified approximately in 2–3 % 

of neuroblastoma cases.47 In neuroblastoma cells with amplification of 

the ALK gene, ALK induces hyperphosphorylation of ShcC. The ShcC is a 

protein that possesses SH2 and PTB domains that function as a scaffolding 

in activating ERK1/2 and AKT pathways.48,49 In addition, ALK knockdown by 

small interfering RNA (siRNA) in neuroblastoma cells significantly reduced 

the phosphorylation of ShcC and AKT, promoting apoptosis.46 These 

results suggest that amplification of the ALK gene is involved in regulating 

survival and proliferation in neuroblastoma cells.

The Role of Anaplastic Lymphoma Kinase Mutation 
in Neural Cancer
In the last decade, activating mutations in the kinase domain of the 

ALK receptor have been reported. Such mutations induce constitutively 

the activity of the tyrosine kinase of the receptor, which leads to 

Cell survivalProliferation

Mutation
site

Cell growth

Figure 2: Potential Therapeutic Targets  
Against Resistance to Anaplastic  
Lymphoma Kinase Receptor

The different strategies for targeting resistance to anaplastic lymphoma kinase (ALK), 
in the yellow boxes, are summarized in this diagram. Tyrosine kinase inhibitors (TKIs) 
such as crizotinib; antibodies against ALK; small molecules against resistant mutations 
to crizotinib, such as CH5424803; inhibitors of heat shock protein 90 (HSP90) such as 17-
AAG; inhibitors of mammalian target of rapamycin (mTOR), such as Torin2.  
Amp = amplification gene; mut = mutations; exp = increased protein expression.

Table 1: Alteration Anaplastic Lymphoma Kinase Gene in Cancer 
 
Disease	 Fusion Protein	 Chromosomal Abnormality	 Gene Amplification	 Mutation 	 Reference
ALCL	 NPM-ALK	 t(2;5)(p23;q35)			   2, 34, 35, 38 

		  TPM3-ALK	 t(1;2)(p25;q23)				  

DLBCL	 NPM-ALK	 t(2;5)(p23;q35)			   36, 37

NSCLC	 EML4-ALK	 Inv(2)(p21;p23)			   4, 40, 41

Breast cancer	 EML4-ALK	 Inv(2)(p21;p23)			   5

Neuroblastoma			   ALK		  47, 48

					     R1275Q	 51,52

					     G1128A	 53

					     F1174L	 6, 52, 54

					     F1245C	 55, 56

ALCL = anaplastic large-cell lymphoma; DLBCL = diffuse large B-cell lymphoma; NSCLC = non-small cell lung cancer.
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phosphorylation of downstream effectors, resulting in the regulation 

of cellular processes such as a proliferation, survival, and migration. 

It has been reported that ALK is mutated in 8  % of all neuroblastoma 

cases.50 Different germline mutations have been reported in the kinase 

domain of ALK.6 The R1275 is the most frequent mutation and is detected 

in 50  % of tumors with ALK mutation. In this mutation, arginine (R) is 

replaced by glutamine (Q) at position 1275, promoting conformational 

changes in the receptor, breaking the autoinhibitory interaction between 

the juxtamembrane domain and the kinase domain, and generating a 

constitutively active receptor.6,51,52 The R1275Q mutant shows higher 

catalytic activity compared with the wild-type.13 G1128A is another 

germline mutation, where glycine (G) is replaced by alanine (A) at 

position 1128, this mutation promotes activation of ERK, AKT, and STAT3, 

and these mutations are involved in the initiation and progression of 

neuroblastoma.53 The discovery of activating mutations in germline 

implicates that these are hereditary; however, mutation penetrance can 

be incomplete.

Somatic activating mutations have also been described in the ALK 

receptor.6 Two mutation hotspots have been found in the kinase domain 

of ALK: the R1275 and F1174. The R1275Q mutation prevents autoinhibitory 

interaction.6,52 The F1174L mutation results in the substitution of 

phenylalanine (F) by leucine (L) at position 1174, this mutation causes 

resistance to ALK kinase inhibitors.54 Both types of mutations are associated 

with constitutive phosphorylation of ALK and activation of ERK, AKT, and 

STAT3 pathways.53,55,56 The third most-frequent mutation in ALK is F1245C, 

which is also activating (see Table 1 and Figure 2). Treatment with short 

hairpin RNA against ALK (shRNA-ALK) or small-molecule inhibitor of ALK 

promotes apoptosis in cell lines that express these mutations; these three 

mutations represent 86 % of all mutations in ALK.13,56,50

Resistance to Anaplastic Lymphoma  
Kinase Inhibitors
The tyrosine kinase inhibitors (TKIs) could be potential drugs against 

cancer. Crizotinib is a TKI that inhibits the activity of the tyrosine kinase 

through competitive binding to the ATP-binding site at the kinase domain. 

Crizotinib is a drug with high specificity to ALK over other 120 kinases that 

has been particularly effective against NSCLC, ALCL, and neuroblastoma, 

which present chromosomal rearrangements or mutation of the ALK 

gene.57 Currently, crizotinib is being evaluated in phase I clinical trials.54 In 

patients with EML4-ALK-positive NSCLC, the response rate to crizotinib is 

high, around 60 %.58–60 However, recent reports from EML4-ALK-positive 

patients have described that these acquire resistance to crizotinib and 

relapse at 5  months of treatment.61,62 Resistance to crizotinib could be 

attributed to mutations in ALK, such as mutation F1174L that has been 

described as resistant to TKI, or to secondary mutations resulting from 

crizotinib treatment, such as the gatekeeper mutation L1196M, which 

adopts a structural conformation that decreases binding of the drug to 

the kinase domain.54 Another mechanism that could lead to resistance is 

through amplification of the ALK gene (see Figure 2). 

Overcoming Anaplastic Lymphoma Kinase  
Drug Resistance
One of the most common alternatives to overcome resistance to a drug 

is to increase its concentration in the treatment; however, this strategy 

is not beneficial in most cases. It has been described that the treatment 

with increasing doses of crizotinib in EML4-ALK-positive H3122 cell line 

can result in adverse effects. Treatment with crizotinib at intermediate 

doses, around 600 nM, has a positive effect on the amplification of 

ALK, whereas high doses (1 μM) promote mutation F1174L described 

as resistant to this drug (see Figure 2).61 An alternative to overcome 

the resistance to crizotinib treatment is the design of drugs based 

on crystallographic studies of ALK mutant proteins. An example is 

CH5424802 derived from the benzo[b]carbazole (Chugai Pharmaceuticals 

Ltd), which inhibits growth of neuroblastoma cells that express the 

mutant F1174L (see Figure 2).63 Another target strategy for the de novo 

resistance generated by mutation F1174L is immunotherapy. Recent 

reports have demonstrated that ALK-directed antibodies inhibit growth 

of neuroblastoma cells, suggesting their effectiveness in inhibiting the 

wild receptor and mutants.64 However, the efficiency of these antibodies 

in tumors with rearrangements of the ALK gene must be questioned, 

because usually the fusion proteins of ALK show a different cellular 

distribution from that of the wild receptor,65,66 avoiding antibody binding 

(see Figure 2). The combination of kinase inhibitors and chaperone 

inhibitors are another option as targets to overcome drugs resistance. 

According to the aforementioned, it has been reported that, in tumors 

expressing the F1174L mutant, the treatment with crizotinib induces 

differential expression of kinases, decreasing AKT expression, and 

increasing the expression of mammalian target of rapamycin (mTOR). 

The combined treatment of crizotinib and Torin2, the latter a selective 

inhibitor of mTOR, suppresses tumor growth significantly (see Figure 2). 

In addition, the ALK fusion proteins are proteins known to interact with 

heat shock protein 90 (hsp90). Inhibition of hsp90 in cell lines that express 

EML4-ALK induces a significant inhibition of growth (see Figure 2).1 The 

aforementioned points out that the combined treatment with inhibitors 

could be the most appropriate strategy to overcome resistance to drugs.

Conclusion
Resistance to drugs, as occurs with the use of TKIs, must inevitably be 

considered in the research in this field. Elucidation of the resistance 

mechanisms will allow for the development of new therapeutic 

strategies to overcome drug resistance in cancer treatment, such as 

generation of more potent drugs, combination of drugs, or the use  

of immunotherapy. n 
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