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As is the case with most solid tumors, gastrointestinal (GI) tumors are treated 

in a variety of modalities, which are used singularly or in combination, 

including surgery, targeted therapies, radiation, and chemotherapy. Survival 

rates by stage in colon and rectal cancer are given in Table 1. 

Cancer stem cells (CSCs) are believed to be malignant cells that have the 

capacity to initiate and maintain tumor growth and survival.1 They are more 

resistant to radiation and chemotherapeutic agents than other cancer cells.2 

The presence of CSCs following cancer therapy may explain the initiation of 

metastasis and later recurrence of cancers, which can occur even when there 

is a good initial response to radiation or chemotherapy.3 The first experiments 

suggesting the presence of CSCs in GI cancers were conducted in 2007.4,5 The 

investigators used flow cytometry to isolate CSCs using CD133 as a marker and 

then demonstrated the ability of these CD133-positive cells to form xenografts 

in non-obese diabetic/severe combined immunodeficiency mice.

Origin of cancer stem cells of the 
gastrointestinal system 
A schematic representation of an individual colon crypt is depicted in 

Figure 1. Stem cells lie at the bottom of the crypt and through asymmetric  

division are responsible for generating all epithelial cell types along the 

crypt–villus axis. GI stem cells may be intrinsically prone to forming CSCs 

because of their long lifespan combined with rapid turnover and it is widely 

believed that CSCs are derived from normal stem cells.6,7 Other possible 

sources for GI CSCs include dedifferentiated intestinal cells, possibly via 

nuclear factor-kappa-B (NF-κB) modulation of Wnt signaling7,8 and bone 

marrow-derived progenitor cells progressing through metaplasia and 

dysplasia to cancer.9 

Cancer stem cell biomarkers 
CD133
The CD133 molecule, which is also known as prominin-1, is a pentaspan-

transmembrane glycoprotein that has been shown to be located mainly in 

membrane protrusions.10 It was first identified as a surface protein marker 

of a subset of hematopoietic stem and progenitor cells as early as 1997,11 

but its biologic function has yet to be elucidated. In 2007, CD133-positive 

cells separated from colorectal tumor cells were demonstrated to possess 

self-renewal properties and high tumorigenic potential.4,5 Systematic 

reviews have indicated that CD133 is a prognostic factor in colorectal 

cancer (CRC)12 and gastric cancer.13 Carbon nanotube-conjugated CD133-
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positive monoclonal antibodies led to photothemolysis of CD133-positive 

glioblastoma cells in vivo and in mice,14 suggesting that CD133 may 

represent a useful target to selectively inhibit CSCs in CD133-expressing 

tumor types.

CD44
CD44, a cell surface adhesion molecule, is the principal receptor for 

hyaluronate, which is the most abundant extracellular matrix component.15,16 

CD44 has been suggested to perform functions in CSCs such as mediation 

of adhesion and homing to the stem cell niche, enhancement of anti-

apoptotic proteins and surface efflux pump expression, regulation of the 

cellular redox status and the response to the activation of the canonical Wnt 

pathway.17–19 Future research is needed to elucidate the suitability of CD44 

as a CSC marker in GI cancer and its role in tumorigenesis.

EpCAM
Epithelial cell adhesion molecule (EpCAM), initially described in human CRC 

as a tumor-associated antigen,20 is expressed highly in a range of human 

epithelial normal and cancer tissues, including the colon.21 Several lines of 

evidence indicate that EpCAM is involved in cell adhesion, proliferation, 

migration, and cancer and stem cell signaling.22,23 

Other potential markers
More recently, identified possible markers of CSCs include: CD29/integrin 

β1, a mucin-like cell adhesion molecule;24 CD24/HSA, a extracellular matrix 

protein receptor that is involved in regulation of cell migration, proliferation, 

survival, differentiation, and death;25 Lgr5/Gpr49, a receptor for R-spondin 

proteins;26 and CD166/ALCAM, a cell adhesion molecule.27

Limitations of cancer stem cell markers
Identification and isolation of CSCs using putative surface markers has 

received much attention in cancer research. However, heterogeneity 

among GI tumors and GI tumor subtypes has led to difficulty in pinpointing 

unique markers. Expression of surface markers varies at different tumor 

stages and their main regulatory functions are not understood fully.28 Lack 

of universal expression of surface markers has obfuscated their use and no 

optimal combination of markers has been confirmed for the identification 

of CSCs. Further, non-CSCs have been shown to also express some of these 

markers.29 CSC markers are an area of continuous development as more 

studies identify molecules that may serve as new CSC markers and help to 

identify CSCs in GI cancers in a tissue-specific manner.

Cancer stemness and epithelial-to-mesenchymal 
transition 
Stemness, initially taken to mean expression of stem cell genes, such 

as Nanog, Oct4, and Sox2, is a defining property of embryonic and adult 

stem cells.30 Stemness can be measured by a cell’s ability to form spheres 

when cultured in stem cell media.31 Chemotherapy32 and radiation33 have 

been found to induce the expression of stemness genes in cancer cells in 

vitro, thereby enriching the CSC population in the residual tumor. 

Epithelial-to-mesenchymal transition (EMT) is the capacity of epithelial cells 

to acquire mesenchymal traits to allow local invasion into surrounding 

tissues and systemic dissemination to distant organ sites.3 Recent evidence 

indicates that EMT can induce differentiated cancer cells into a CSC-like 

state, suggesting a functional link between stemness and EMT.34 

Stemness pathways associated with cancer 
stem cells in gastrointestinal malignancies—
therapeutic targets
The desired aim is to overcome resistance to chemotherapeutics and 

reduce therapy-related toxicity by developing treatments that are specific 

for CSCs and that are not toxic to healthy tissues. Examples of stemness 

pathways as therapeutic targets are discussed below.

Nanog
Nanog, an essential regulator of embryonic stem cell self-renewal that 

inhibits differentiation, is overexpressed in a variety of cancers including 

Table 1: Survival rates for (A) colon cancer and  
(B) rectal cancer by stage

A

Stage Five-year Relative Survival Rate

I 92%

IIA 87%

IIB 63%

IIIA 89%

IIIB 69%

IIIC 53%

IV 11%

B

Stage Five-year Relative Survival Rate

I 87%

IIA 80%

IIB 49%

IIIA 84%

IIIB 71%

IIIC 58%

IV 12%

Source: National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database, 
looking at people diagnosed with colon and rectal cancer between 2004 and 2010. These 
statistics are based on a previous version of the staging system. In that version, there was no 
stage IIC (those cancers were considered stage IIB). Also, some cancers that are now considered 
stage IIIC were classified as stage IIIB, while some other cancers that are now considered stage 
IIIB were classified as stage IIIC.
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Figure 1: The possible origins of cancer stem cells of 
the gastrointestinal system
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those of the GI system35,36 High levels of Nanog expression are associated 

with advanced stages of cancer and a poor prognosis, suggesting that it 

may play a key role in tumor transformation, tumorigenesis, and tumor 

metastasis.35 Nanog is involved in a complex regulatory network that 

determines cell fate, proliferation, and apoptosis (Table 2). It is therefore 

a promising therapeutic target. Genetic ablation of Nanog in SW620 

colorectal carcinoma cells suppressed both tumor growth in athymic 

nude mice and cell proliferation in vitro.37 Further, ablation mediated by 

short hairpin RNA decreased the expression of core CSC transcription 

factors, supporting a role for Nanog as a signali ng hub in CSCs.38

BBI503 is an orally administered investigational agent designed to inhibit 

Nanog and other CSC pathways by targeting kinases. Early signs of anti-

tumor activity have been observed in pre-treated patients with advanced 

cancer (BBI503-101, NCT01781455).39 In this ongoing, first-in-human, 

open-label phase I dose-escalation study, 11 of 20 evaluable patients 

(55%) had stable disease with a median time to progression of 16 weeks. 

Of these 11 patients, tumor regression and/or prolonged stable disease 

(≥16 weeks) were observed in 10 patients (50% all enrolled patients). 

Further, in biopsied tumor tissues, dose-dependent pharmacodynamics 

effects of decreased expression level of Nanog were observed. The 

recommended phase II dose of continuous once daily BBI503 was 300 

mg/day. At this dose, BBI503 was shown to be well tolerated and the 

pharmacokinetic profile supports once-daily dosing as an acceptable 

administration schedule. Mild GI adverse events were observed, including 

grade 1 and 2 diarrhea, adnominal cramps, nausea, and anorexia. Grade 3 

diarrhea was noted in two patients at 450 mg once daily. 

In an extension study of BBI503-101, BBI503 was administered to patients 

with advanced CRC.40 Patients (n=47) with heavily pre-treated CRC were 

enrolled. The disease control rate in evaluable patients (n=39) with high 

Nanog expression (biomarker positive) was 56%, whereas in biomarker-

negative patients, the disease control rate was 13% (p=0.04). Median 

overall survival in biomarker-positive patients (intent-to-treat) was 38 

weeks compared with 16 weeks in biomarker-negative patients (p=0.089 

Log-Rank). BBI503 was well tolerated at the recommended phase II dose 

of 300 mg once daily; grade 3 adverse events were diarrhea (n=5), fatigue 

(n=4), nausea (n=1), and weight loss (n=1).

STAT3
STAT3 is a latent cytoplasmic transcription factor that appears to be 

activated constitutively in many cancers, to play a pivotal role in metastasis 

and tumor growth, and is associated with decreased survival.41–43 It was 

first discovered in 1994 as a signal transducer from cell surface receptors 

to the nucleus.44 STAT activation has been suggested to be important at 

every stage of metastasis (Figure 2). 

Napabucasin (BBI608) is an orally administered investigational agent that 

has been designed to inhibit CSC pathways including STAT3, Nanog, and 

β-catenin pathways by targeting STAT3.41,45 Pre-clinical data indicate that 

BBI608 inhibits STAT3-driven transcription and suppresses metastasis 

Table 2: Upstream regulators (A) and downstream 
modulators (B) of Nanog91

A
Upstream Regulators of Nanog

Targets Mediated Cell Functions References

STAT3 Maintenance of pluripotency 4, 93, 95

Ezh2 Epigenetic regulation of Nanog, self-renewal 72

Hedgehog Self-renewal, tumorigenicity 32, 71, 89

TLR4 Tumor formation 132

p53 Differentiation, CSC properties acquirement 32, 84, 85

Esrrb Maintaining Nanog expression 111, 112

HIF2α Enhances Nanog and CSC properties under 

hypoxia

133 

PI3K/Akt Tumorigenesis, cell survival, and selfrenewal 33, 115, 121, 134

Akt = protein kinase B; CSC = cancer stem cells; Esrrb = estrogen-related receptor β;  
Ezh2 = enhancer of zeste homolog 2; HIF2α = hypoxia inducible factor 2α; PI3K = 
phosphatidylinositide 3-kinase; STAT3 = signal transducer and activator of transcription 3;  
TLR4 = toll-like receptor 4.

B
Downstream Modulators of Nanog

Targets Mediated Cell Functions References

Cyclin D1 Cell cycle progression, G0/G1 arrest, and 

proliferation

76, 77 

ABCB1 Chemoresistance 34, 107–109

GDF3 Growth and differentiation 105

Dnmt1 Maintenance of self-renewal and undifferentiated 

state

135 

E-cadherin Migration and invasion 78

FoxJ1 Migration and invasion 78

Tcl1a Immune evasion 79

Dkk1 Paracrine communication with stroma 124

FAK CSC proliferation and motility, tumor survival 84,122

ABCB1 = ATP-binding cassette sub-family B member 1; CSC = cancer stem cell;  
Dkk1 = dickkopf-related protein 1; Dnmt1 = DNA (cytosine-5)-methyltransferase 1; FAK = focal 
adhesion kinase; FoxJ1 = forkhead box protein J1; GDF3 = growth differentiation factor-3;  
Tcl1a = T-cell leukemia/lymphoma protein 1A. 

Figure 2: STAT3 activation in cell proliferation, cell 
survival, invasion, angiogenesis, and metastasis41 
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Reproduced from Kamran et al.41
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and cancer relapse.45,46 An ongoing phase Ib study has demonstrated that 

BBI608 and weekly paclitaxel can be combined at full dose in patients 

with advanced malignancies (NCT01325441).47 Early anti-tumor activity 

was shown across several tumor types, especially in those patients with 

gastric and gastroesophageal junction adenocarcinoma. BBI608-201 (NCT 

01325441) is a phase Ib/II study of BBI608 combined with paclitaxel in 

advanced gastric and gastroesophageal junction adenocarcinoma.48 

BBI608 at doses of 480 mg twice daily (BID) and 500 mg BID plus weekly 

paclitaxel (80 mg/m2) was well tolerated. Common adverse events 

included grade 1 to 2 diarrhea, abdominal cramping, nausea, and vomiting. 

Grade 3 adverse events including vomiting, diarrhea of five days’ duration 

or longer, fatigue, abdominal cramps, nausea, and dehydration. Early 

signs of anti-cancer activity were observed in a cohort of heavily pre-

treated patients. The BRIGHTER trial is a phase III randomized, double-

blind, placebo-controlled clinical trial of BBI608 plus weekly paclitaxel 

versus placebo plus weekly paclitaxel in adult patients with advanced, 

previously treated gastric and gastroesophageal junction adenocarcinoma 

(NCT02178956).49 There is also early indication in BBI608-246, that BBI608 

can be administered with folinic acid, 5-flurouracil (5-FU) and irinotecan 

(FOLFIRI) with and without bevacizumab in patients with advanced CRC 

(NCT02024607),50 and in BBI608-224 with panitumumab in KRAS wild-type 

patients with metastatic CRC (NCT01776307).51 Early signs of anti-cancer 

activity in these studies warrant further investigation of BBI608. A phase 

III randomized study of BBI608 plus best supportive care versus placebo 

plus best supportive care is being assessed in patients with pre-treated 

advanced colorectal carcinoma (NCT01830621).52 

Notch 
Notch plays a role in embryogenesis, cellular homeostasis, differentiation, 

EMT, and apoptosis (Figure 3).53–56 Notch signaling is initiated by ligand 

binding to the Notch receptor, which then undergoes a two-step 

proteolytic cleavage by a disintegrin and metalloproteases family 

proteases and γ-secretase.57 Notch signaling can be inhibited by two 

major classes of Notch inhibitors: γ-secretase inhibitors (GSIs), including 

RO4929097, MRK-003, MK-0752, and PF03084014, and monoclonal 

antibodies directing against Notch receptors or ligands. GSIs have been 

shown to provide clinical benefit; for example, PF0308414 demonstrated 

early anti-tumor activity in a phase I dose-finding study in patients with 

advanced-stage solid tumors.58 A phase II study of 37 patients with 

metastatic CRC who had received at least two prior lines of therapy 

in the metastatic setting found that RO4929097 monotherapy did not 

demonstrate significant drug activity.59

Notch mediates biologic process through: a canonical pathway (involving 

ligand-induced cleavage of Notch for transcriptional regulation that includes 

Notch 1–4 and five Notch ligands Delta like, 1, 3 and 4 and Jagged 1 and 2;60 

and non-canonical pathways.55,61 Notch has also been implicated in crosstalk 

with other oncogenic pathways such as Hedgehog and Wnt signaling.62 Phase 

I/II trials of Notch inhibitors in solid tumors are in progress (NCT01647828, 

NCT01859741, NCT01277146, NCT01957007, NCT02259582, NCT01952249, 

NCT01189929, NCT01952249, NCT01189929). Examples of Notch inhibitors 

include the compounds tarextumab (OMP-59R5) and demcizumab (OMP-

21M18). OMP-59R5, which blocks both Notch2 and Notch3 signaling, has 

demonstrated any anti-tumor effect in patient-derived xenograft tumors.63 

A phase I trial (n=55) of OMP-21M18, which targets Notch ligand Delta like 4, 

revealed anti-tumor activity and good tolerability at doses of ≤5 mg weekly.64

Wnt/β-catenin 
Notch signaling can also interact with Wnt/β-catenin signaling (Figure 

4).55,61 The Wnt pathway has a key role in embryogenesis, with effects that 

Figure 3: Notch in Tumor Metastasis as an Epithelial-
to-mesenchymal Transition Inducer56

Figure 4: Regulation of β-catenin Protein by Notch61 
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regulate proliferation and apoptosis in developing cells.65 Wnt signaling 

disruptions are observed in a variety of GI cancers66 and may have a role 

in inducing EMT.67 Trials involving Wnt/β-catenin inhibitors are underway, 

including BBI608 in gastric and gastroesophageal junction cancer 

(NCT02178956) and in advanced CRC (NCT01776307) as discussed in the 

STAT3 section. BBI608 has demonstrated early anticancer activity in a 

phase I trial in patients with CRC and anal squamous carcinoma.68 

Monoclonal antibodies, which inhibit Wnt signaling either by neutralizing 

Wnt ligands or by inhibiting Wnt receptors Frizzled (Fz) and LRP, are also 

under clinical investigation. Vantictumab (OMP-18R5), a monoclonal 

antibody that binds five Fz receptors and inhibits Wnt signaling, and 

a fusion protein decoy receptor, ipafricept (OMP-54F28), are under 

study in phase I studies in advanced stage solid tumors (ClinicalTrials.

gov NCT01345201, NCT02005315, NCT01957007, NCT01973309, 

NCT01608867, NCT02069145, NCT02092363). OMP-54F28 has been 

demonstrated to inhibit patient-derived xenograft tumor growth and to 

decrease CSC numbers.69

Additional signaling pathways 
There are many other signaling pathways currently under investigation. Focal 

adhesion kinase (FAK) is a non-receptor tyrosine kinase70 with important roles 

in adhesion, survival, motility, metastasis, angiogenesis, lymphangiogenesis, 

cancer stem functions, tumor microenvironment, and EMT.71–76 Current FAK 

inhibitors mostly target the FAK kinase domain with the ATP-binding site 

to inhibit FAK kinase activity.77 Transforming growth factor-β signaling is 

important for self-renewal and maintenance in the formation of GI cancers.78,79 

Hedgehog describes a complex of molecules that regulate cell differentiation, 

regeneration, and stem cell properties.80 It is central to the development and 

homeostasis of gut tissue and is deregulated in GI cancers.81 The stemness 

factor Nanog is one of the major targets for Hedgehog signaling.82 Specific 

inhibitors of Hedgehog signaling, such as vismodegib (GDC-0449), and 

sonidegib (LDE225) are being examined in clinical trials in addition to the 

approved indication for basal cell carcinoma.83 Addition of vismodegib to 

oxaliplatin with 5-FU and folinic acid (FOLFOX) chemotherapy did not improve 

progression-free survival in patients with gastric and gastroesophageal  

junction cancer.84 

Phosphatase and tensin homolog (PTEN) is a phosphatase that antagonizes 

the activity of PI3 kinase; PTEN-deficient mice demonstrate an increase in 

intestinal stem cells, which results in excess crypt formation.85 The PTEN 

pathway helps regulate the proliferative rate and number of intestinal 

stem cells.

Induction of cellular quiescence
An alternative to the CSC inhibition discussed involves the chemical 

induction of cellular quiescence. This is a state of reversible cell cycle 

arrest, associated with reduced translation rate, activation of autophagy, 

and a low metabolic rate as characterized by decreased glycolysis.86 

This is a burgeoning area of research and it has been suggested that the 

efficacy of CSC inhibitors and conventional therapies may be enhanced 

if used in combination with chemoquiescence-inducing agents such as 

chloroquine and its analogues.87–89

Cancer stem cell inhibitor trial design
Given that the CSCs constitute only a small proportion of an established 

tumor, a response rate read-out might not be the most suitable endpoint 

for a CSC inhibitor trial. The effect could be delayed and may better be 

captured with time-related endpoints using response criteria developed for 

immunotherapies.90

Conclusion
The discovery of CSCs—which have been described in GI neoplasms such 

as colon, pancreas, liver, and gastroesophageal tumors—provides promise 

of a suitable target for improving future oncological treatment. CSCs of 

the GI system are well suited to research as they are abundant, and have 

proliferative potential, as well as a uniform structural arrangement which 

is maintained under tightly controlled signaling pathways. The CSC model 

has been criticized for failing to take into account the heterogeneous nature 

of GI cancers. However, CSCs themselves may evolve over time, giving 

rise to cells that are both genetically and functionally heterogeneous.29 

Accurate targeting of CSCs must be preceded by precise identification 

and characterization of those cells. More research is therefore needed to 

determine which and how many markers need to be considered in the 

identification of GI CSCs.

CSC-targeted therapies may represent a new treatment modality in 

patients with cancer. Research continues to target CSCs to render them 

more chemo- and radio-sensitive, inhibit their potential to proliferate 

and undergo EMT, thus decreasing the incidence of metastases. 

Future challenges include optimizing the study design for determining 

investigational agents’ efficacy in cancer. ■
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