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Myelodysplastic Syndromes – The Epigenetic 
Model for Drug Development? 
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A pplication of sequencing technology has advanced our understanding of the molecular landscape of myelodysplastic syndromes 
(MDS). Recurrent driver mutations in genes implicated in epigenetic regulation, and functional modelling of the disease has proven 
the importance of epigenetic dysregulation in MDS pathogenesis. Although available therapies such as azacitidine and decitabine are 

thought to exert their effect by epigenetic modulation, deep understanding of disease biology and development of specific epigenetically targeted 
therapies is still an area under active research. In this editorial we will focus on the molecular basis of MDS with particular focus on epigenetic 
dysregulation and new agents under development targeting this group of biological processes.
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Epigenetic dysregulation in myelodysplastic syndromes – how 
important is it?
Our understanding of the biology and pathogenesis of myelodysplastic syndromes (MDS) has evolved 

dramatically in the last two decades. Evidence of an epigenetic background of the disease identified 

by a hypermethylation of specific genes and promoter-associated CpG islands was reported in the late 

1990s1 and first decade of this century.2 Multiple sequencing efforts have shed light in the molecular 

annotation of the disease3–6 and have allowed to better group and dissect the different entities 

within this heterogeneous group of diseases.7,8 Dysregulation of epigenetic processes such as DNA 

methylation, histone modifications, miRNA and splicing machinery are essential in MDS pathogenesis 

and, in fact, multiple mutations and epimutations in well characterised epigenetically related genes 

such as DNTM3A, TET2, ASXL1, EZH2, IDH1/2 and splicing factors such as U2AF1, SF3B1, ZRSR2 and 

SRSF2 have been consistently described.9–12 Functional assays in cellular and murine models exploring 

the leukemogenic potential of such mutations have also confirmed these findings13–18 As a result of 

this, despite the complexity and heterogeneity of MDS pathogenesis, MDS can be considered, at least 

partially, an epigenetic disease.

Interestingly, recent studies by several groups including Jaiwal et al.,19 Xie et al.20 and Genovese et 

al.21 have confirmed that many of such mutations, particularly DNTM3A, TET2 and ASXL1 mutations, 

can be identified with increased frequency in elderly individuals with no evidence of haematological 

malignancy as part of what has been named clonal haematopoiesis of indeterminate potential (CHIP). 

This is particularly relevant considering haematopoietic stem-cell aging is likely one of the mechanisms 

implicated in MDS clonal initiation and progression19,22–24 and that these same mutations are known 

to participate in this aging process. In fact, there is evidence supporting that individuals with CHIP, as 

those with idiopathic cytopenias of unknown significance (ICUS), characterised by cytopenias with no 

significant dysplasia and presence of CHIP-like mutations in up to 28% of cases, are at an increased 

risk of ultimately developing MDS.25,26 These findings suggest epigenetic dysregulation is at the base of 

the progressive biological process driving clonal evolution leading to MDS.

Targeting the epigenome in myelodysplastic syndromes – state of 
the art and future perspectives
While the above mentioned findings have clearly advanced the knowledge-base of MDS 

pathophysiology, clear therapeutic and prognostic impact of this data still remains elusive and, 

despite a few exceptions, has not yet allowed modifying disease treatment. One of such exceptions 

was the development and subsequent approval by the FDA of azacitidine and decitabine, two 

cytidine analogues with a potent inhibitory effect of DNA methylation by induction of DNA methyl 

transferase (DNMT) depletion. Although approval of these agents led to a revolution of the treatment 

of these patients, reducing and delaying the risk of transformation to acute leukaemia and prolonging 
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survival, only 40% of patients achieve responses to therapy and, in a 

majority of them, responses tend to be short-lived with eventual loss of 

response resulting in poor outcomes.27–29 To overcome this, multiple clinical 

trials evaluating the potential of combinations of new epigenetic modifiers 

with hypomethylating agents have been conducted. Post-translational 

modifications of histones by acetylation, methylation or ubiquination 

represent the most diverse mechanisms implicated in chromatin 

remodeling and regulation of gene expression30–32 with aberrant expression 

and function of these regulators clearly participating in MDS pathogenesis. 

Modification of these abnormal histone modifications by histone 

deacetylase (HDAC) inhibitors has been systematically tested in multiple 

clinical trials first as monotherapy, and subsequently in combination with 

azacitidine due to in vitro data suggesting potential synergistic effect of 

this combination.33 Ever since the initial study assessing the effectiveness 

of valproic acid in combination with azacitidine,34 multiple other HDAC 

inhibitors such as vorinostat,35 entinostat,36 panobinostat and, more 

recently, pracinostat have been explored in combination with azacitidine. 

However, despite these efforts in trying to improve the outcomes obtained 

with hypomethylating agents alone, histone Deacetylase inhibitor and 

hypomethylating agent (HDACi-HMA) combos have failed to significantly 

improve response rates of survival of patients with MDS. As a result of 

this, the interest has shifted to alternative strategies exploring not only 

epigenetic processes but also innate immunity signalling and immune 

checkpoint regulation amongst others.

Despite these underwhelming results, epigenetic deregulation in MDS is 

far more complex and heterogeneous than simple DNA hypermethylation 

or histone acetylation. Although less frequent than in acute leukaemia, 

approximately 4–12% patients with MDS have clones with detectable 

mutations in the isocitrate dehydrogenase genes IDH1 and IDH2. 

Presence of R132 in IDH1, and R140 and R172 mutations in IDH2 induce 

a disruption in the enzyme catalytic activity inducing a product shift from 

α-ketoglutarate to 2-hydroxyglutarate which in turn causes inhibition of the 

ten-eleven-translocation (TET) genes and increased homeobox A (HOXA) 

activity responsible for a differentiation block. Development of specific 

inhibitors such as IDH-305 or AG-120 in the case of IDH1mut, AG-221 in the 

case of IDH2mut or the dual inhibitor AG-881 have opened the possibility of 

specifically targeting this alterations. Initial results in patients with acute 

myeloid leukaemia (AML) and MDS show response rates of 36–41% with 

18% complete responses.37,38 This is specially promising in the context 

of patients with IDH mutations who lose response to hypomethylating 

agents due to the absence of available standard therapies and otherwise 

poor prognosis.

Mutations in genes coding for splicing machinery factors represent  

the most frequent group of genomic abnormalities in MDS. Insight in the 

specific biological processes leading to particular disease phenotypes 

has rapidly evolved in the last 2 years. Mutations in SF3B1, SRSF2, U2AF1 

and ZRSR2 rarely co-occur within a same clone and tend to appear in 

heterozygosis suggesting only limited degrees of abnormal splicing 

function are compatible with cellular viability. In fact, preliminary data 

presented in the last American Society of Hematology (ASH) meeting 

suggests inhibition of splicing machinery induces significantly increased 

reduction in leukaemia burden in spliceosome-mutant leukaemias.39

In view of these advances, dissection of the specific epigenetic abnormalities 

present in different subsets of MDS will likely lead to a tailored selection of 

therapy guided by the particular genomic abnormalities present in each 

individual case (Figure 1). q

Figure 1: New agents targeting epigenetic processes in 
myelodysplastic syndromes
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