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Abnormal activation of mesenchymal epithelial transition (MET) receptor tyrosine kinase is associated with oncogenesis. Various underlying 
mechanisms, including alteration, amplification, gene rearrangement, and exon skipping in the transcript account for abnormal MET 
signaling. One of the critical alterations in MET leading to non-small cell lung carcinoma (NSCLC) is MET exon 14 (METex14) skipping, a 

driver mutation, which accounts for approximately 3–4% of lung adenocarcinoma. METex14 skipping results in the formation of a functionally 
active and stable truncated receptor lacking the juxtamembrane regulatory domain responsible for MET ubiquitination. Several MET kinase 
inhibitors have been developed targeting MET receptors, and many are in clinical trials. The US Food and Drug Administration has recently 
approved capmatinib (TabrectaTM; Novartis, Basel, Switzerland) for the treatment of NSCLC with METex14 skipping alteration. We review the 
current understanding of the implications of aberrant MET activation in NSCLC harboring METex14 skipping alteration, available diagnostic 
options, potential therapies in the pipeline, and the future clinical landscape for such alterations.
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Advanced non-small cell lung carcinoma (NSCLC) treatment paradigms have evolved during the past 

decade. Identification of tumor-specific molecular alteration in cancer driver genes has led to the 

development of targeted therapies.1–3 Most of the tumors harboring such alterations are sensitive 

to tyrosine kinase inhibitor (TKI) drugs, making such oncogenic drivers promising targets for the 

development of antitumor therapeutics.4,5 

MET is a proto-oncogene that can act as an oncogenic driver after certain genomic alterations. It is 

expressed in many epithelial as well as mesenchymal cells, including hepatocytes, hematopoietic 

cells, and neuronal cells, and is essential for important biological processes, such as embryonic 

development and organogenesis.6,7 However, mutations and its aberrant activation can promote 

tumor development and cancer progression by dysregulating downstream signaling pathways.8,9 

Initially, abnormal MET signaling was believed to be the mechanism of resistance acquired by NSCLC 

tumor cells against certain therapeutics.10–12 Further reports demonstrated the role of MET alterations 

in sustained MET pathway dysregulation, leading to oncogenesis.13–15 Clinically, NSCLCs with MET 

alterations are associated with poor prognosis, and these alterations have been recognized as an 

important therapeutic target in various cancers, including NSCLC.16–18 

In this review, we discuss the current understanding of the implications of aberrant MET activation in 

NSCLC harboring MET exon 14 (METex14) skipping alteration, available diagnostic options, potential 

therapies in the pipeline, and the future clinical landscape. 

Structure and function of the MET receptor
MET was first identified in a chemically treated human-osteosarcoma-derived cell line as a 

transforming gene from a fusion of TPR-MET.19 The MET gene is located on chromosome 7q31 in 

the human genome, which spans about 125 kb DNA and contains 21 exons and 20 introns.20 MET is 

encoded as a precursor, which is modified into a mature protein by proteolytic cleavage between 

its a and b subunits.21 A mature MET protein is composed of a small a subunit (50 kDa) and a larger 

b (145 kDa) subunit linked together by a disulfide bridge.8 The a subunit and a portion of b subunit 

together form the extracellular region of the heterodimer protein, while the remainder of the b subunit 

comprise the transmembrane and intracellular regions (Figure 1A).
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The extracellular component of MET contains three domains. N-terminal 

Sema (Sema-phorin) is the largest domain comprising 500 residues, which 

encompasses the a  and a part of b subunits. The domain is essential 

for the ligand binding,22 dimerization, and activation of MET.23,24 The Sema 

domain is followed by the plexins-semaphorins-integrins (PSI) domain, 

containing four disulphide bonds, which are essential for the proper 

orientation of the receptor for ligand binding.25 The PSI domain is connected 

to the transmembrane helix of MET through the immunoglobulin-plexins-

transcription factor domain. The intracellular portion of the receptor includes 

a juxtamembrane (JM) domain, a tyrosine kinase (TK) catalytic domain, and 

a C-terminal multifunctional docking site.22 Binding of its ligand, hepatocyte 

growth factor (HGF), which is also known as scatter factor, is essential for 

the activation of the kinase activity.26,27 HGF is the only MET receptor ligand 

known so far and binds to the receptor with high affinity.22,28 

MET signaling and its dysregulation in NSCLC
HGF binding to MET causes dimerization of the receptor leading to the 

autophosphorylation of intracellular residues Y1234 and Y1235 in the kinase 

domain followed by phosphorylation of two additional tyrosine residues, 

Y1349 and Y1356, in the C-terminal outside of the kinase domain (Figure 

1B). Phosphorylation of the C-terminal residues leads to the formation of the 

docking site, which is necessary for the engagement of signaling partners.29 

Subsequently, adapter and effector proteins, such as GRB2 (growth factor 

receptor bound protein 2), GAB1 (GRB2 associated binding protein 1) and 

SHC (Src homology 2 domain-containing), bind to the docking site triggering 

downstream signaling.30–36 MET signaling plays a crucial role in executing various 

cellular functions.37–39 To maintain functional balance and cellular integrity, MET 

activity is regulated through various mechanisms. The active MET receptor can 

phosphorylate at residue Y1003 in the JM domain, a site for the recruitment 

of E3-ligase Casitas B-lineage lymphoma (CBL), and subsequently undergo 

ubiquitin-mediated lysosomal degradation, leading to the downregulation 

of MET (Figure 2A).40–42 Additionally, it has been shown that phosphorylation 

of S985 at JM domain acts as a counterbalance to receptor activation, by 

negatively regulating its activity, even in the presence of HGF.43,44 Furthermore, 

proteolytic cleavage of MET by ADAMs (a disintegrin and metalloproteinase) 

and gamma-secretase may also contribute to the downregulation of MET 

receptor activity.45,46 

Alterations in MET can result in the dysregulation of MET signaling, which is 

present in various solid tumors including NSCLC and is associated with tumor 

progression and metastasis.47–49 Gene amplification, rearrangement, and skipping 

alterations, which lead to the overexpression and impaired degradation of MET, 

are the major underlying factors of aberrant MET activation.50,51 Alteration or 

deletion of crucial residues in regulatory domain interfere with mechanisms 

that help to maintain MET receptor turnover leading to its accumulation and 

hyperactivation.52–54 

METex14 skipping alteration in NSCLC 
Skipping of METex14 in NSCLC was first reported in 2005.55 Substitutions 

or deletions at 3′ splice site in intron 13 or the 5′ end splice site of 

Figure 1: Structure of MET receptor Figure 2: MET splicing event involving exon 14 and its 
consequences to MET stability

A: Schematic representation of MET receptor and its domain architecture. Important 
residues in regulatory, catalytic, and docking regions are shown. B: Activation of MET 
receptor. HGF binding to the N-terminal domain of MET results in its dimerization and 
autophosphorylation, leading to downstream signaling. Phosphorylation of tyrosine 
residues in regulatory, catalytic, and docking sites are shown. 
DS = docking sites; HGF = hepatocyte growth factor; IPT = immunoglobulins-plexins-
transcription factors; JM = juxtamembrane; MET = mesenchymal epithelial transition; PSI 
= plexins-semaphorins-integrins; Sema = semaphorin domain; TK = tyrosine kinase.

A: Normal MET splicing (left) leads to the biosynthesis of the normal MET receptor that 
can be targeted by E3-ubiquitin ligase cCBL and directed for lysosomal degradation 
(right). B: Mutations in the splice junctions of METex14 can lead to exon skipping (left) 
resulting in the mature MET receptor that lacks juxtamembrane regulatory domain 
(right). Consequently, the receptor cannot be targeted by cCBL, impairing its lysosomal 
degradation thereby leading to the accumulation of the protein and increased receptor 
activity. CBL = Casitas B-lineage lymphoma; HGF = hepatocyte growth factor; MET = 
mesenchymal epithelial transition; mRNA = messenger RNA.
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intron 14 results in METex14 skipping.56,57 This somatic alteration, at or 

around the splice junction of METex14, leads to the loss of exon 14 in 

the transcript and synthesis of the MET protein with an in-frame deletion 

of 47 amino acids in the JM domain (including residue Y1003) ablating 

the CBL-mediating ubiquitination and degradation of the receptor (Figure 

2B).24,58 Consequently, METex14 skipping results in increased levels of MET 

protein, which can drive activation of downstream signaling pathways 

that promote tumor development.57,59

Splicing occurs through two sequential steps involving various parts of 

the intron. The splice donor site and the splice acceptor site are present 

at the 5′ and 3′ ends, respectively. The splice acceptor site is flanked 

upstream by the branch point and poly-pyrimidine tract sites (Figure 3A).  

First, the branch point nucleotide performs a nucleophilic attack on 

the first nucleotide of the intron at the splice donor site. This forms an 

intermediate loop or lariat. Subsequently, the 3′ end of the released exon 

performs a similar nucleophilic attack on the last nucleotide of the SA 

thereby fusing the exons and releasing the intron lariat.60,61 Most METex14 

skipping alterations involve the branch point, poly-pyrimidine tract or splice 

acceptor site in intron 13 or the splice donor site in intron 14. As shown in 

Figure 3B, these alterations interfere with the splicing mechanism leading 

to exon 14 skipping.

Interestingly, METex14 skipping alterations are primary oncogenic drivers 

in NSCLC, as these alterations are most likely to be mutually exclusive 

to other known oncogenic drivers, such as KRAS, EGFR, ALK, ROS1 or 

RET.57,62,63 Approximately 3–4% of NSCLCs harbor the METex14 alteration  

(Table 1).18,57,63–68 They are associated with some histologic subtypes of 

NSCLC but are not related to tumor stage. Among the histological subtypes, 

METex14 skipping alteration is commonly found in sarcomatoid carcinoma 

(4.9–31%),69–72 adenosquamous carcinoma (4–8%),18,73,74 adenocarcinoma 

(3–4%),1,18,57,65,75,76 and squamous cell carcinoma (2%).74,77 Also, among 

adenocarcinomas, the predominant subtypes are acinar (35–52.9%) or 

solid subtypes (35.3–53%).64,70,73,74,77 Clinically, METex14 skipping abnormality 

is found mostly in patients of advanced age.18,63,68,70,73,74,77,78

Detection of METex14 skipping alteration
Immunohistochemical analysis is a routine practice for the detection of 

MET overexpression. However, this technique on its own cannot specifically 

confirm METex14 skipping or an underlying alteration. Therefore, DNA- and 

RNA-based molecular assays are preferred methods for the detection 

of METex14 alteration. DNA-based sequencing assay can detect MET 

alterations such as insertions, deletions, point mutations, or duplications 

in splice sites, which may cause exon 14 skipping. Identification of such 

mutational hotspots leading to METex14 skipping alteration are used 

to predict the possible skipping event. However, METex14 skipping is 

associated with more than 120 reported sequence variants in splice sites, 

which makes it challenging to detect these mutations using only DNA-based 

assays.57,63 Therefore, analysis of RNA transcripts allows for the verification 

of fusion between exons 13 and 15.83 In ideal cases, both DNA- and RNA-

based assays are used to complement each other for reliable detection of 

METex14 alterations (Table 1).1,18,63–82

Reverse transcription polymerase chain reaction (RT-PCR), quantitative real 

time RT-PCR, and Sanger sequencing are the routine approaches used for 

the analysis of mutations and METex14 alteration.18,73 mRNA transcript can 

be reverse transcribed using RT-PCR and corresponding complementary 

DNA is sequenced using Sanger techniques to verify exon 14 skipping 

from the sample. However, efficiency of the method relies on the quality 

of RNA, which is often derived from formalin-fixed paraffin-embedded or 

frozen tissue.83 Sanger sequencing of METex14 and its splice sites is still 

in routine practice for small scale analysis covering a portion of genomic 

region, which is performed using the PCR amplicon from genomic DNA 

covering exon 13 and exon 15, or cDNA from MET transcript. However, the 

European Society for Medical Oncology (ESMO) guidelines has proposed 

next-generation sequencing (NGS) and RNA sequencing, if possible, to 

detect METex14 alteration in its updated guidelines on September 2020.84,85

Recently, NGS has become a common diagnostic method to identify 

METex14 alterations. This high throughput method allows the large-scale 

analysis of multiple samples in a short time with comprehensive genomic 

coverage.1,64,86,87 The two most popular NGS sequencing panels used for 

targeted sequence profiling are hybridization capture and amplicon-

based sequencing panels. The hybridization capture panel allows more 

comprehensive profiling for all alteration types, whereas the amplicon-

Figure 3: Molecular mechanism of MET splicing and  
exon 14 skipping

A: Schematic representation pre mRNA splicing mechanism. GU: 5′ splice donor (SD) site, 
AG: 3′ splice acceptor (SA) site, A: branch point (BP) and PY-PY-PY: poly-pyrimidine tract 
(PT). The SA is flanked upstream by the BP and PT sites, resulting the exclusion of the 
intron forming of a lariat.  
B: Molecular mechanism involved in METex14 alterations. Molecular alterations in intron 
13 or 14 involving donor or receptor sites can result in exon 14 skipping.  
BP = branch point; MET = mesenchymal epithelial transition; SA = splice acceptor;  
SD = splice donor; PT = poly-pyrimidine trace.
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based panel is ideal for analysing single nucleotide variants and indels 

(insertions and deletions). NGS analysis also can simultaneously detect 

other mutations or translocations (such as ALK, ROS1, RET, NTRK1, and 

NRG1 fusions) in a single assay.83 Due to the inherent difficulties in acquiring 

sufficient RNA material for testing, DNA-based NGS panels are used more 

frequently to identify METex14 skipping alterations. Recently, the US Food 

and Drug Administration (FDA) approved FoundationOne® CDx (Foundation 

Medicine, Cambridge, MA, USA) as a companion diagnostic test for this 

indication.88 Circulating tumor DNA (CtDNA) or RNA from plasma/blood 

samples (liquid biopsy) can also be used to identify METex14 alterations 

using NGS technologies. A clinical trial (VISION; ClinicalTrials.gov Identifier: 

NCTO2864992) aiming to test METex14 skipping alterations in circulating 

free DNA using plasma liquid biopsy is ongoing.89 Some of the commercially 

available targeted NGS assays that are used to detect these alterations are 

compared in Table 2.90–101

Therapeutic intervention of NSCLC with METex14 
skipping alteration
NSCLC characterized with METex14 skipping alterations is targetable.57 

Although many METex14 skipping tumors were found to express 

programmed death-ligand-1 (PD-L1), the overall response rate to PD-1/PD-

L1-directed immune checkpoint inhibitors has been found to be low, and 

median progression-free survival (mPFS) was found to be short in patients 

with NSCLC.102,103 It should be noted that the mutation burden is generally 

low in such tumors. There are three therapeutic approaches to target 

tumors harboring METex14 skipping alteration: 

Table 1: Prevalence of METex14 skipping alteration and diagnostic method for detection used in various studies

Location Number of 

patients

Histology Diagnostic method Median age, 

years (range)

METex14 alterations Reference

USA 230 ADC WES 68.5 (42–86) 4.3% (10/230) CGARN (2014)1

Korea 70 ADC RT-PCR followed by gDNA sequencing 65 2.9% (2/70) Park et al. (2015)75

Hong- Kong 154 ADC PCR-sanger sequencing 64.3 (28–90) 3.9% (6/154) Yeung et al. (2015)76

USA 36 PSC WES, RT-PCR followed by sanger 

sequencing

69.3 (38–87) 22.2% (8/36) Liu et al. (2015)69

USA 54 NSCLC RNA sequencing followed by gDNA 

sequencing

75 (43–84) 18.5% (10/54) cohort of WT-EGFR, KRAS,  

ALK, ROS1 

Heist et al. (2016)79

China 1,296 NSCLC NGS, RT-PCR sanger sequencing 59 (41–77) 0.9% (12/1,296) all; 0.9% (10/1,101) of ADC Liu et al. (2016)80

USA 933 NSCLC NGS, confirmation by qRT-PCR 72.5 (59–84) 3.0% (28/933) Awad et al. (2016)63

Hong Kong 687 NSCLC PCR followed by sanger sequencing 

(using gDNA)

74 2.6% (18/687) all; 2.6% (10/392) ADC; 4.8% 

(1/21) ASC; 31.8% (7/22) PSC

Tong et al. (2016)18

China 1,770 NSCLC qRT-PCR 66 (47–77) 1.3% (23/1,770) all; 1.6% (21/1,305) ADC; 4.2% 

(2/48) ASC

Zheng et al. (2016)73

USA 11,205 Lung 

cancers

Hybrid capture-based NGS 73 (43–95) 2.7% (298/11,205) all; 2.9% (205/7,140) ADC; 

2.1% (25/1,206) SCC; 8.2% (8/98) ASC; 7.5% 

(8/107) PSC

Schrock et al. (2016)74

USA 860 ADC Hybrid capture-based NGS – 3.0% (26/860) Jordon et al. (2017)81

Korea 795 NSCLC qRT-PCR followed by sequencing 73 (55–81) 2.1% (17/795) ADC; 37.8% (17/45) cohort of 

WT-EGFR, KRAS, ALK, ROS1

Lee et al. (2017)64

Korea 102 ADC, PSC qRT-PCR 73 (59–82) 8.8% (9/102) ADC; 20.0% (9/45) PSC Kwon et al. (2017)70

France 231 ADC, PSC MassARRAY iPLEX genotyping 

technology, sanger sequencing 

61 (41–79) 5.3% (8/150) ADC; 5% (4/81) PSC Saffroy et al. (2017)71

Taiwan 850 Lung 

cancers

RT-PCR followed by sequencing 77 (36–95) 3.3% (28/850) all; 4.0% (27/668) ADC; 1.3% 

(1/78) SCC

Gow et al. (2017)77

China 77 PSC RT-PCR, NGS 62 (37–80) 20.8% (16/77) Li et al. (2018)82

China 461 NSCLC RT-PCR, sanger Sequencing 60 (31–87) 2.0% (9/461) Qiu et al. (2018)66

USA 3,632 NSCLC Hybrid capture-based NGS – 3% (113/3632) Suzawa et al. (2019)67

Korea 414 NSCLC qRT-PCR and/or Sanger sequencing 

(followed by hybrid capture-based  

NGS in some of the patients)

69 (54–80) 3.14% (13/414) cohort of WT-EGFR, KRAS, ALK, 

ROS1; 4.8% (11/230) ADC; 9.5% (2/21) PSC

Kim et al. (2019)65

China 46 PSC NGS sequencing 46 (45–80) 8.7% (4/46) Yu et al. (2019)72

Netherlands 1,497 Non-SC 

NSCLC

Amplicon-based NGS 76.5 (53–90) 2.1% (32/1497) Pruis et al. (2020)78

France 2,369 NSCLC Sanger sequencing, NGS 75 (46–97) 2.6% (62/2,369) Champagne et al. (2020)68

ADC = adenocarcinoma; ALK = anaplastic lymphoma kinase; ASC = adeno-squamous cell carcinoma; CGARN = Cancer Genome Atlas Research Network; EGFR = epidermal growth 
factor receptor; gDNA = genomic DNA; NGS = next-generation sequencing; NSCLC = non-small cell lung carcinoma; PSC = pulmonary sarcomatoid carcinoma; qRT-PCR = quantitative 
real time RT-PCR; RT-PCR = reverse transcription polymerase chain reaction; SC = squamous cell; SCC = squamous cell carcinoma; TCGA = the cancer genome atlas; WES = whole 
exome sequencing; WT = wild type.
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•	 anti-MET and anti-HGF antibodies targeting the extracellular domain of 

the receptor; 

•	 MET TKIs targeting the intracellular ATP binding pocket of target kinase 

to inhibit the autophosphorylation of the receptor; and 

•	 antibody–drug conjugates.65,104,105

Clinical trials and case-reports have suggested varying degrees of 

responsiveness to experimental and FDA-approved small molecule TKIs 

against METex14 skipping NSCLC (Table 3). A multicenter retrospective 

analysis determined that the treatment with a MET TKI was associated with 

a significant prolongation in survival with a hazard ratio of 0.11 compared to 

patients who did not receive any MET inhibitor.106 MET TKIs are commonly 

divided into two types based on their targeting mechanism. Type I MET 

TKIs—such as crizotinib, capmatinib, tepotinib, and savolitinib—bind to MET 

in its catalytically active conformation where the aspartic acid-phenylalanine-

glycine (DFG) motif projects into the ATP-binding site (DFG-in).87,107,108 Type II 

MET TKIs—such as cabozantinib, merestinib, and glesatinib—bind to MET in 

its inactive DFG-out conformation.109,110 Type I MET TKIs are further subdivided 

into type Ia (crizotinib) and Ib (capmatinib, tepotinib, and savolitinib) based 

on the interaction of TKI with G1163, a solvent residue. Various MET TKIs 

currently being used in clinical trials are listed in Table 4.

Multi-kinase MET inhibitors and their response against 
METex14 skipping NSCLC
This group of inhibitors targets multiple TKs and has been used to target 

MET kinase. Crizotinib, cabozantinib, merestinib, glesatinib, and TPX-0022 

are the major target agents in this group. 

Crizotinib
Crizotinib (PF-02341066; Xalkori®, Pfizer, New York, NY, USA) was originally 

developed as a MET inhibitor, which showed activity against ALK and 

ROS1 rearrangement, and was approved as an ALK and ROS inhibitor in 

NSCLC.63,64,111,112 Crizotinib was reported to have potent antitumor activity in 

NSCLC harboring MET amplification and exon 14 skipping alteration.57,87,113 

The phase I study PROFILE 1001 (ClinicalTrials.gov Identifier: NCT00585195) 

was expanded to evaluate the efficacy and safety of crizotinib in 69 patients 

with NSCLC with METex14 alteration. Among 65 response-evaluable 

patients, 5% had a confirmed complete response, 28% had a confirmed 

partial response, 45% had stable disease, and mPFS was 7.4 months.87 

In 2018, crizotinib received FDA breakthrough therapy designation for 

the treatment of patients with NSCLC with METex14 alterations based 

on a promising response rate of up to 44% in an earlier-phase study.59 A 

retrospective study of 22 patients treated with crizotinib reported a similar 

mPFS of 7.4 months.106 However, a phase II study (METROS; ClinicalTrials.gov  

Identifier: NCT0249961) reported an objective response rate (ORR) of 27% with 

an mPFS of 4.4 months in patients with NSCLC (n=26) with MET dysregulation 

with crizotinib.114 Similarly, the AcSé phase II study (by French National Cancer 

Institute; ClinicalTrials.gov Identifier: NCT02034981) reported insufficient ORR 

(10.7%), even after two cycles of crizotinib in 28 patients with NSCLC with 

METex14 alteration.115 Furthermore, neoadjuvant treatment with crizotinib 

in a locally advanced unresectable METex14 mutated lung adenocarcinoma 

converted the unresectable tumor into a resectable one.116 

Cabozantinib
Cabozantinib (XL-184, BMS-907351; Cabometyx®, Exelixis, Alameda, CA, USA) 

is a multi-kinase inhibitor targeting multiple TKs including MET. Patients with 

NSCLC with METex14 skipping alteration have shown the partial response 

to therapy after treatment with cabozantib.107,117 In a phase II study of solid 

tumors (ClinicalTrials.gov Identifier: NCT00940225) ORR was 10% and mPFS 

was 4 months.118 Importantly, some case studies of patients with NSCLC 

with METex14 alteration treated with cabozantinib showed intracranial 

response.117,119 Phase II studies in patients with NSCLC with MET deregulation 

are ongoing (ClinicalTrials.gov Identifier: NCT03911193 [CABinMET study], 

and ClinicalTrials.gov Identifier: NCT01639508).120 

Merestinib
Merestinib (LY2801653) is another multi-kinase ATP-competitive inhibitor of 

MET.121 After the demonstration of an acceptable safety profile and potential 

antitumor activity in a phase I trial,122 a phase II clinical study (ClinicalTrials.

gov Identifier: NCT02920996) is ongoing for the treatment of advanced 

NSCLC harboring METex14 alterations. A preclinical study demonstrated the  

antitumor response of merestinib in combination with emibetuzumab in 

Table 2: Next-generation sequencing assays used in the detection of METex14 skipping in clinical studies

NGS assay Target Sample quantity Number of 

genes covered

Detection of mutations Turn-over  

time

Tumor based

AmpliSeq for Illumina Focus Panel90 DNA or RNA 1–10 ng DNA or RNA 52 5% frequency Not available

Archer® FUSIONPlex™ Lung 91,92 RNA FFPE tissue; 2–250 ng DNA 14 Not available Not available

FoundationOne® CDx 93,94 DNA 50–1,000 ng DNA 324 As low as 2–5% allele frequency <2 weeks

Oncomine focus 95 DNA or RNA FFPE tissue;  

7 mm thick and >5 mm sq

52 100% if mutation is >5% allele frequency 3 days

TruSight Oncology 500 96 DNA or RNA 40 ng DNA or RNA 523 96% 4–5 days

Liquid based

Archer® LiquidPlex™97 Cell free DNA 5–10 ng DNA 28 If present in >1% sample Not available

FoundationOne® Liquid 98 Circulating tumour DNA 2 × 8.5 mL blood samples 70 If present in >0.5% sample <2 weeks

Guardiant360® 99,100 Circulating free DNA 10 mL blood sample for  

5–30 ng DNA

73 If present in >0.1% 7 days

PlasmaSELECT™ 64, PGDx 101 Circulating tumor DNA 2 × 10 mL blood samples 64 Not available Not available

FFPE = formalin-fixed paraffin-embedded; NGS = next-generation sequencing.
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Table 3: Agents that target METex14 in development

Agent Company Type of agent Targets Stage of 

development

Multi-kinase inhibitors

Crizotinib 

(Xalkori®, PF-02341066)

Pfizer Ia /ATP competitive TKI MET, ALK, RON, ROS1 Phase II

Cabozantinib (Cabometyx®, XL184) Exelixis II/ATP competitive TKI MET, VEGFR-1/2, RET, KIT, TIE2, FLT1/3/4, AXL Phase III

Merestinib (LY2801653) Eli Lilly II/ATP competitive TKI MET, AXL, RON, MERTK, ROS1, NTRK1/2/3, TEK,  

DDR1/2, FLT3

Phase II

Glesatinib (MGCD265) Mirati Therapeutics II/ATP competitive TKI MET, AXL Phase II

TPX-0022 Turning Point Therapeutics I/ATP competitive TKI MET, CSF1R, SRC Phase I

Selective MET TKI

Capmatinib 

(TabrectaTM, INC280)

Novartis Ib/ATP competitive TKI MET Phase II

Tepotinib (Teometko®, EMD1214063, 

MSC2156119 J)

Merck Ib/ATP competitive TKI MET Phase II

Savolitinib 

(AZD6094, HMPL-504, volitinib)

AstraZeneca Ib/ATP competitive TKI MET Phase II

Bozitinib 

(APL-101/PLB-1001, CBT-101)

Apollomics Ib/ATP competitive TKI MET Phase I

Glumetinib (SCC244) Shanghai Haihe Pharmaceutical II/ATP competitive TKI MET Phase I/II

Antibodies

Emibetuzumab (LY2875358) Eli Lilly IgG4 MoAb MET Phase III

Sym015 Symphogen IgG1 MoAb mixture MET Phase I/II

REGN5093 Regeneron Pharmaceuticals MET bispecific Ab MET Phase I/II

Other

Telisotuzumab vedotin (ABBV-399) AbbVie Antibody–drug conjugate MET Phase II

Ab = antibody; ALK = anaplastic lymphoma kinase; ATP = adenosine triphosphate; CSF1R = colony stimulating factor 1 receptor; DDR1/2 = discoidin domain receptor tyrosine kinase 
1/2; FLT3 = fms-like tyrosine kinase 3; Ig = immunoglobulin; MERTK = MER receptor tyrosine kinase; MoAb = monoclonal antibody; NTRK = neurotrophic-tropomyosin receptor kinase; 
RON = receptor originated from Nantes; ROS1 = c-ros oncogene 1; TIE2 = tyrosine-protein kinase receptor; TKI = tyrosine kinase inhibitor; VEGFR = vascular endothelial growth factor 
receptor.

a mouse model with METex14 skipping alteration.121 Recently, merestinib 

demonstrated antitumor activity in a patient with lung cancer harboring 

METex14 skipping and acquired resistance against capmatinib and crizotinib.123

Glesatinib
Glesatinib (MGCD265) is also a multi-kinase inhibitor of MET, AXL, 

VEGFR1/2/3, RON, and TIE2, which demonstrated antitumor activity in 

preclinical and clinical studies with METex14 alteration.109,124 A phase II 

study (ClinicalTrials.gov Identifier: NCT02544633) showed the antitumor 

activity of glesatinib in patients who had METex14 skipping alteration and 

acquired resistance against crizotinib.109,123,125

TPX-0022
TPX-0022 is a novel multi-kinase inhibitor of MET, CSF1R, and SRC, which 

demonstrated antitumor activity in preclinical xenograft models.126 A recent 

phase I clinical study reported that TPX-0022 was well tolerated, and 

responses were observed in patients with advanced solid tumors harboring 

genetic MET alterations (ClinicalTrials.gov Identifier: NCT03993873).127

Selective kinase MET inhibitor on METex14  
skipping NSCLC
This group of inhibitors specifically target the MET receptor by binding  

to the ATP binding pocket of the MET kinase. Application of such selective 

MET inhibitors has produced a promising response in patients with 

METex14 skipping alteration. Capmatinib, tepotinib, savolitinib, and APL-101 

are among the promising agents in this group. 

Capmatinib
Capmatinib (INC280; TrabectaTM, Novartis, Basel, Switzerland) is a highly-

selective, ATP-competitive MET inhibitor and the first and only MET inhibitor 

approved by the FDA to target metastatic NSCLC with METex14 skipping 

alteration as determined by an FDA-approved test.128–130 The approval is based 

on the results from the pivotal GEOMETRY phase II study (ClinicalTrials.gov  

Identifier: NCT02414139). The primary efficacy outcome based on ORR 

was 68% and 41% among 28 treatment-naive and 69 previously treated 

patients, respectively, based on the blinded independent review committee 

assessment. The median DOR was 12.6 months (n=19) for treatment-naive 

and 9.7 months (n=28) for pre-treated patients.131,132 Importantly, capmatinib 

also exhibited antitumor activity in patients with brain metastases in 

previously treated NSCLC harboring METex14 alterations.108,133

Tepotinib
Tepotinib (END 1214063; Tepmetko®, Merck KGaA, Darmstadt, Germany) is 

an ATP-competitive and highly-selective oral MET inhibitor, which showed 

MET inhibitory activity in in vitro and in vivo models. It supressed MET 

activation by both ligand-dependent and independent mechanisms.134 
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In March 2020, regulatory authority in Japan approved tepotinib for the 

treatment of NSCLC with METex14 skipping alteration.135 The approval 

was based on data from 99 patients with NSCLC with METex14 skipping 

alteration who had been followed up for 9 months in the ongoing single-

arm phase II VISION study (ClinicalTrials.gov Identifier: NCT02864992). 

The primary endpoint ORR of the study, as assessed by an independent 

review committee, was 46% with median DOR of 11.1 months for patients 

identified by combined biopsy (liquid/tissue biopsy). The response rate was 

48% for patients in the liquid biopsy group (n=66), and was 50% for those in 

the tissue biopsy group (n=60).89 The FDA granted tepotinib a breakthrough 

therapy designation for the treatment of NSCLC harboring METex14 

skipping alterations in September 2019. Recently, a case of antitumor 

activity of tepotinib in a patient with NSCLC with brain metastasis harboring 

a MET gene rearrangement was reported.136

Table 4: Clinical studies of various MET TKIs in NSCLC with METex14 skipping alteration and observation (final/interim reports)

Clinicaltrials.gov Identifier/

phase/location

Recruited patients Population and prior 

treatment

Drug/dose Responses 

evaluated patients

Observations 

(final/interim reports)

NCT00585195

(PROFILE-1001)/phase I/US

NSCLC with METex14 skipping 69 (62% pre-treated) cizotinib, 250 mg 

BID

65 ORR: 32% (95% CI: 21–45); 

DOR: 9.1 months (95% CI: 6.4–12.7);  

mPFS: 7.3 months (95% CI: 5.4–9.1)87

NCT02499614  

(METROS)/phase II/Italy

NSCLC with METex14 skipping 

or MET amplification

26 (100% pre-treated) cizotinib, 250 mg 

BID

26 ORR: 27% (95% CI: 11–47);  

mPFS: 4.4 months (95% CI: 3.0–5.8); 

OS: 5.4 months (95% CI: 4.2–6.5)114

NCT02034981  

(AcSé)/phase II/France

NSCLC with METex14 skipping 

or MET amplification

28 (96% pre-treated) cizotinib, 250 mg 

BID

25 ORR: 10.7% (95% CI: 2.3–28.2);  

mPFS: 2.4 mo (95% CI: 1.6–5.9); 

median OS: 8.1 mo (95% CI: 4.1–12.7)115

NCT02664935  

(National Lung Matrix)-Arm 

D3/phase II/UK

NSCLC including METex14 

skipping

12 (100% pre-treated) Multi-drug 

(including 

crizotinib, 250 mg 

BID)

8 ORR: 65% (95% CI: 39–86); 

DCB: 68% (95% CI: 39–89)152

NCT01324479/ 

phase I/global

NSCLC with MET dysregulated 55 (100% pre-treated) capmatinib, 400 or 

600 mg BID

55 ORR: 20% (95% CI: 10.4–33);

Tumour responses in all 4 patients 

with METex14153,154 

NCT02414139  

(GEOMETRY mono 1)/phase 

II/global

NSCLC with cMET mutation or 

gene copy number or cMET 

dysregulation

97 (28 prior  

treatment-naive and  

69 pre-treated) 

capmatinib,  

400 mg BID

28 treatment-naive 

and 69 pre-treated

Treatment-naive:  

ORR: 68% (95% CI: 48–84);  

median DOR: 12.6 months  

(95% CI: 5.5–25.3) 

 

Pretreated patients: 

ORR: 41% (95% CI: 29–53); 

mPFS: 9.7 months  

(95% CI: 5.5–13.0)132,155,156

NCT02864992  

(VISION)/phase II/global

NSCLC with METex14 skipping 

or MET amplification

99 (43 prior  

treatment-naive and  

56 pre-treated)

tepotinib, 500 

mg QD

99 combined 

biopsy;  

66 liquid biopsy;  

60 tissue biopsy

Combined biopsy (n=99):  

ORR: 46% (95% CI: 36–57); 

DOR: 11.1 months (95% CI: 7.2–NE); 

mPFS: 8.5 months (95% CI: 6.7–11.0)

 

Liquid biopsy (n=66):  

ORR: 48% (95% CI: 36–61); 

DOR: 9.9 months (95% CI: 7.2–NE); 

mPFS: 8.5 months (95% CI: 5.1–11.0)  

Tissue biopsy (n=60): 

ORR: 50% (95% CI: 37–63); 

median DOR: 15.7 months  

(95% CI: 9.7–NE); 

mPFS: 11.0 months  

(95% CI: 5.7–17.1)89

NCT02897479/phase II/China NSCLC

(PSC and other NSCLC with 

METex14 skipping)

70 (prior MET treatment-

naive)

savolitinib, 600 mg 

QD or 400 mg QD

61 ORR: 47.5% (95% CI: 34.6–60.7); 

DCR: 93.4% (95% CI: 84.1–98.2); 

mPFS: 6.8 months  

(95% CI: 4.2–13.8)139

BID = twice daily; CI = confidence interval; DCB = durable clinical benefit; DCR = disease control rate; DOR = duration of response; mPFS = median progression-free survival;  
NE = not evaluable; NSCLC = non-small cell lung cancer; ORR = objective response rate; OS = overall survival; PSC = pulmonary sarcomatoid carcinoma; QD = once daily;  
TKI = tyrosine kinase inhibitor.
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Savolitinib
Savolitinib (volitinib, AZD6094, AstraZeneca, Cambridge, UK) is also a highly 

selective MET inhibitor.137,138 Interim data from a phase II study (ClinicalTrials.gov  

Identifier: NCT02897479) reported encouraging antitumor activity and an 

acceptable safety profile of savolitinib in patients with METex14 skipping 

NSCLC, including pulmonary sarcomatoid and other histologies. The ORR 

from preliminary data (n=61) was 47.5% and mPFS was 6.8 months.139 

APL-101
APL-101 (bozitinib, CBT-101, PLB-1001), another highly selective MET TKI, 

has demonstrated robust anticancer activity in various human xenograft 

tumor models with MET dysregulation and bears the potential to cross 

the blood–brain barrier in glioblastoma.140,141 Currently, SPARTA, a phase I/

II study (ClinicalTrials.gov Identifier: NCT03175224) is evaluating antitumor 

activity of APL-101 in patients with NSCLC with METex14 skipping and solid 

tumors with MET aberrations.

Glumetinib
Glumetinib (SCC244) is a highly-selective, ATP-competitive MET inhibitor. 

The antitumor activity of this agent was demonstrated as equivalent to 

capmatinib in a preclinical study.142 Currently, phase I studies (ClinicalTrials.gov  

Identifier: NCT03466268) in patients with NSCLC with MET alterations, and 

another study (ClinicalTrials.gov Identifier: NCT03457532) in patients with 

solid tumors harboring MET alterations are ongoing for the evaluation of 

the safety and antitumor activity of glumetinib. A global phase I/II study 

(ClinicalTrials.gov Identifier: NCT04270591) for patients with NSCLC with 

MET alterations is also ongoing.

The effect of MET antibodies on METex14  
skipping NSCLC 
Emibetuzumab
Emibetuzumab (LY2875358) is a humanized bivalent anti-MET antibody 

that has high neutralization and internalization activities. It showed 

potent antitumor activity to inhibit HGF-dependent and HGF-independent 

tumor growth in mouse xenograft models and in MET-positive (including  

NSCLC) patients.143,144 A preclinical study revealed more antitumor activity  

of emibetuzumab combined with merestinib on gastric cancer with 

METex14 muation.121 

Onartuzumab
Onartuzumab is another antibody drug that has shown antitumor activity in 

preliminary studies. However, it failed to improve the clinical outcomes of 

MET-positive patients compared with placebo in phase III studies.145 

SYM015
SYM015 is a combination of two humanized antibodies directed at the 

elimination of the MET receptors.146 In a phase I/II study (ClinicalTrials.gov 

Identifier: NCT02648724), the safety and efficacy of Sym015 in patients 

with advanced NSCLC with MET amplification and exon 14 deletion were 

observed. Of 20 patients with NSCLC, the ORR was 25% and the disease 

control rate was 80%, with median PFS of 5.5 months.147

REGN5093
REGN5093 is a MET biparatopic antibody that blocks HGF binding and 

causes rapid internalization and degradation of MET.148 A phase I/II study 

(ClinicalTrials.gov Identifier: NCT04077099) demonstrated the safety and 

tolerability of REGN5093 in patients with NSCLC with MET alterations.149 This 

study is ongoing and is open for enrollment of patients.

The impact of antibody–drug conjugates on  
METex14 alteration
Telisotuzumab vedotin 
Telisotuzumab vedotin (ABBV-399) is a conjugate of a MET-targeted 

antibody and monomethyl auristatin E. This antibody–drug conjugate 

has demonstrated antitumor activity in patients NSCLC with  

MET dysregulation in a preliminary analysis from a phase I study.150,151 

Resistance of METex14 skipping alterations  
to MET TKIs
Reports suggest that patients with NSCLC with METex14 skipping 

alterations are sensitive to MET TKI treatment.87,107,111 However, emergence 

of primary or acquired resistance may challenge the efficacy of MET TKI-

based monotherapy.11,123,157 Clinically, the analysis of pre- and post-MET TKI 

treatment data from 20 patients showed 35% on-target and 45% off-target 

resistance acquired after the treatment.123 Even though MET is exclusively a 

driver gene in many cancers, in some cases, METex14 skipping alterations 

may exist with alterations in other driver genes, such as amplifications 

of MDM2 (25–35%), CDK4 (3–21%), and EGFR (6–29%), leading to MET TKI 

resistance. Furthermore, mutations or amplification of KRAS (3–7%) and 

PIK3CA (3–10%), and loss of PTEN expression (23%) may exist with METex14 

skipping alterations contributing to resistance. 

The pre-existence of MET Y1230C on-target mutation in addition to 

METex14 skipping alteration has accounted for the primary resistance 

to crizotinib.158,159 MET-D1228N-acquired mutation was found to be 

responsible for the resistance to crizotinib in a patient with METex14 

skipping alteration, who did not have any additional mutation in MET 

or other driver genes before the treatment started.11 A comprehensive 

analysis of secondary mutations using a Ba/F3 model resistance to eight 

TKIs reported that D1228 and Y1230 are common sites for resistance 

mutations for type I TKIs, whereas L1195 and F1200 are the mutations 

leading to resistance to type II TKIs. D1228A/Y accounts for resistance to 

both type I and II MET TKIs.160

In addition, tumor cells may activate other signaling pathways to 

counterbalance the MET TKI suppressed signaling. In such cases, 

alterations leading to overexpression of key proteins drive the activation 

of alternative receptors, which leads to the sustained activation of major 

signaling pathways (bypass signaling) and contributes to the therapeutic 

resistance, regardless of effective MET inhibition by MET TKI drugs. On the 

other hand, MET dysregulation, mostly due to METex14 skipping alteration, 

has also been observed in NSCLC tumors because of off-target acquired 

resistance to EGFR TKIs.161 

Identification of the resistance mechanism to MET TKIs is crucial for the 

effective treatment of NSCLC. For example, tumors developing acquired 

resistance against glesatinib (type II) through the amplification of the mutated 

METex14 allele showed partial response after switching to crizotinib (type Ia).160 

Merestinib (type II) was reported to function better against D1228N-mediated 

acquired resistance, which developed after the application of capmatinib (type 

Ib).109 Similarly, glesatinib (type II) revealed better antitumor activity in Y1230H/S 

mutation, which developed after crizotinib (type Ia) treatment.123 Preclinical 



ONCOLOGY & HEMATOLOGY REVIEW108

Review  Lung Cancer

and clinical data have demonstrated that tumors harboring METex14 skipping 

alterations along with other mutations, RAS-MAPK or PI3K/AKT pathway 

mutations, show reduced response to MET TKIs.162–164 Overall, the resistance 

mechanisms against different types of MET inhibitor can be different.109 Therapy 

combining relevant inhibitors can be helpful for the treatment of NSCLC with 

METex14 skipping alteration along with other driver mutations.164,165 Extensive 

studies are needed to unravel the full spectrum of resistance mechanisms 

against the inhibitor drugs for optimising therapeutic intervention.

Conclusion and outlook
MET abnormalities due to METex14 skipping alteration can drive cancer 

by upregulating receptor activity. It has become a promising target for 

kinase inhibitor-based targeted therapy in NSCLC, and several recent 

clinical trials have demonstrated the strong therapeutic effect of such 

inhibitors. However, it is not yet available to many potential patients 

who could benefit from such therapy. Firstly, current guidelines do not 

necessitate the analysis of METex14 skipping alterations for a standard 

treatment plan, missing the identification of such mutations in many 

patients and consequently precluding a possible target group from 

receiving MET inhibitors. Secondly, many early-stage patients may not 

be subjected to molecular profiling due to the complexity in accessing 

the tissue biopsy sample. In such cases, application of liquid biopsy 

and ctDNA genotyping can ease sample availability, which can widen 

the scope of diagnosis, thereby enabling more patients to get a proper 

diagnosis and therapy. In addition, a detailed understanding of primary 

and acquired resistance mechanisms can aid in decision making for 

the appropriate therapeutic intervention. More clinical trials focusing 

on the combination of MET inhibitors with inhibitors of other signaling 

pathways can help to identify an appropriate drug combination in MET 

inhibitor-resistant cancers. q
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