Optimizing care with CAR T-cell therapy now and in the future for patients with B-cell malignancies

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME accepts no responsibility for errors or omissions

What are the latest clinical trial and real-world data for CAR T-cell therapy?

Prof. Catherine Thieblemont

Head of the Department of Haemato-Oncology, Hôpital Saint-Louis, Paris, France

What CAR T-cell therapies are currently available for B-cell malignancies?

Expanding options for CD19-targeting CAR T-cell therapies

Axicabtagene ciloleucel

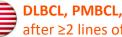
Adult patients^{*} with R/R:

DLBCL and **PMBCL** after ≥2 lines of systemic therapy¹

DLBCL, PMBCL, high-grade BCL, tFL after ≥ 2 lines of systemic therapy²

Brexucabtagene autoleucel

Adult patients with R/R MCL³


Regulatory review for treatment of MCL in progress⁴

Tisagenlecleucel

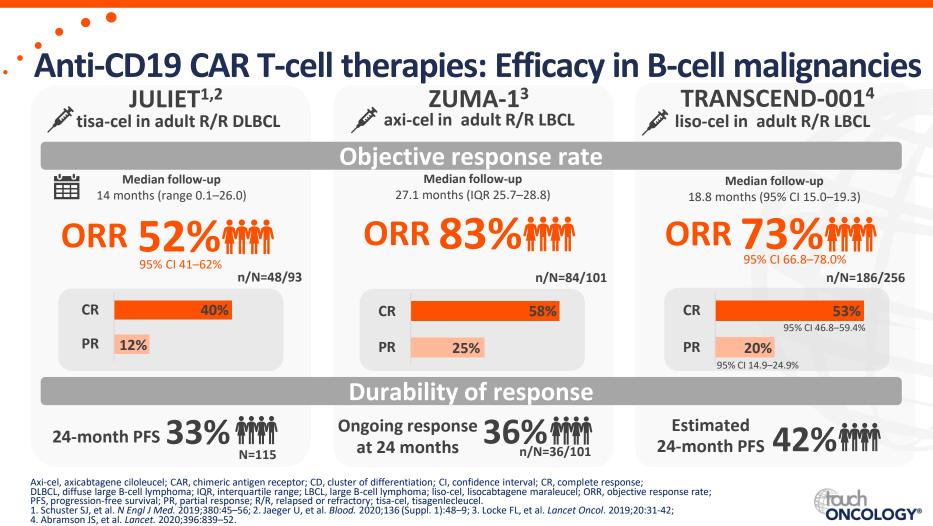
Adult patients with R/R:

DLBCL after ≥ 2 lines of systemic therapy⁵

DLBCL, PMBCL, high-grade BCL, tFL after ≥ 2 lines of systemic therapy⁶

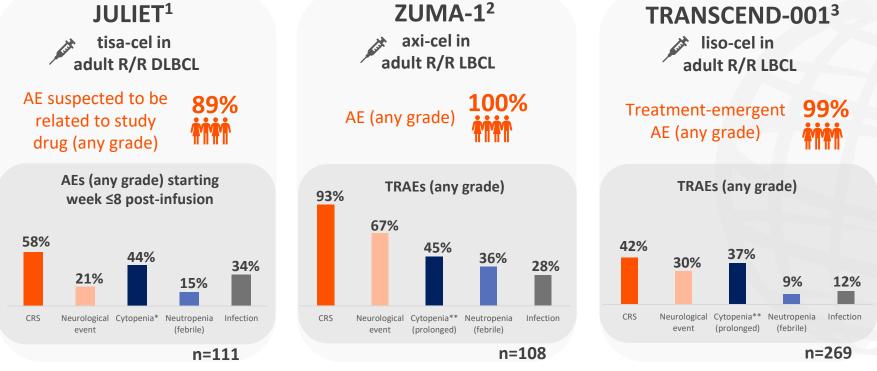
Paediatric and young adults aged ≤25 years with R/R B-cell ALL^{5,6}

Lisocabtagene maraleucel


Investigational CAR T-cell therapy for adult patients with R/R LBCL Regulatory review in progress⁷

*Safety and efficacy in children and adults below 18 years of age have not yet been established. ALL, acute lymphoblastic leukaemia; BCL, B-cell lymphoma; CAR, chimeric antigen receptor; CD, cluster of differentiation; DLBCL, diffuse LBCL; LBCL, large B-cell lymphoma; MCL, mantle cell lymphoma; PMBCL, primary mediastinal LBCL; R/R, relapsed or refractory; tFL, transformed follicular lymphoma. 1. EMA SmPC: axicabtagene ciloleucel; 2. FDA PI: axicabtagene ciloleucel; 3. FDA PI: brexucabtagene autoleucel; 4. EMA Proceedings of CHMP Meeting 12–15 October 2020 available at: www.ema.europa.eu/en/news/meeting-highlights-committee-medicinal-products-human-use-chmp-12-15-october-2020 (accessed 13 January 2021); 5. EMA SmPC: tisagenlecleucel; 6. FDA PI: tisagenlecleucel; 7. Kersten MJ, et al. Curr Opin Oncol. 2020;32:408–17. EMA SmPC and FDA PI available at: EMA www.ema.europa.eu/ and www.fda.gov/ (accessed 13 January 2021).

What are the key clinical trial efficacy data for anti-CD19 CAR T-cell therapies in B-cell malignancies?



ONCOLOGY®

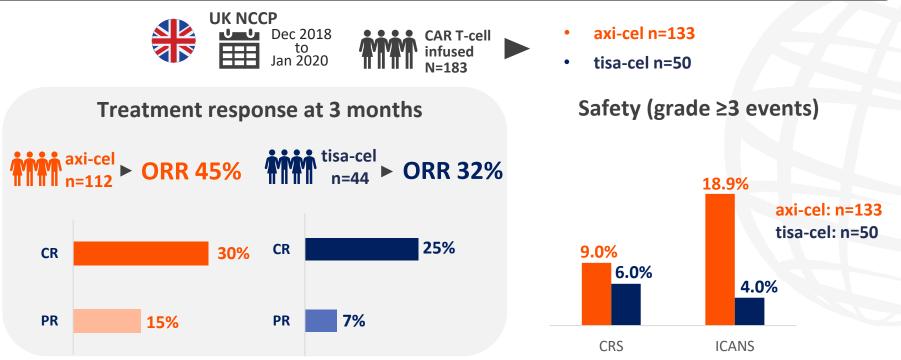
What are the key safety data for the anti-CD19 CAR T-cell therapies in the clinical trial setting?

Anti-CD19 CAR T-cell therapies: Safety in B-cell malignancies

*Cytopenia not resolved by day 28. **Prolonged cytopenia defined as follows: cytopenia lasting ≥30 days and occurring within 3 months of treatment in ZUMA-1;² cytopenia not resolved at day 29 study visit in TRANSCEND-001.³

AE, adverse event; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CD, cluster of differentiation; CRS, cytokine release syndrome; DLBCL, diffuse large B-cell lymphoma; LBCL, large B-cell lymphoma; liso-cel, lisocabtagene maraleucel; R/R, relapsed or refractory; tisa-cel, tisagenlecleucel; TRAE, treatment-related AE.

1. Schuster SJ, et al. N Engl J Med. 2019;380:45–56; 2. Locke FL, et al. Lancet Oncol. 2019;20:31–42; 3. Abramson JS, et al. Lancet. 2020;396:839–52.



How safe and effective are CD19-targeting CAR T-cell therapies for B-cell malignancies in the real-world?

CAR T-cell therapy: The UK NCCP real-world experience

Broadly confirms pivotal trial data suggesting 35–40% patients receiving CAR T-cell therapy may have long-term benefit

Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; ORR, objective response rate; PR, partial response; tisa-cel, tisagenlecleucel; UK NCCP, United Kingdom National CAR-T Clinical Panel. Kuhnl A, et al. EHA25 Virtual 2020 [Oral presentation p42804; abstract S243].

. CAR T-cell therapy: The LYSA real-world experience

Early relapse is associated with high TMTV at time of treatment

Elevated CRP

*Day 0 (time of treatment) with lymphodepletion and CAR T-cell infusion. Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CI, confidence interval; CRP, C-reactive protein; LYSA, French Lymphoma Study Association; OS, overall survival; PFS, progression-free survival; tisa-cel, tisagenlecleucel; TMTV, total metabolic tumour volume. Vercellino L, et al. *Blood Adv.* 2020;4:5607–15.

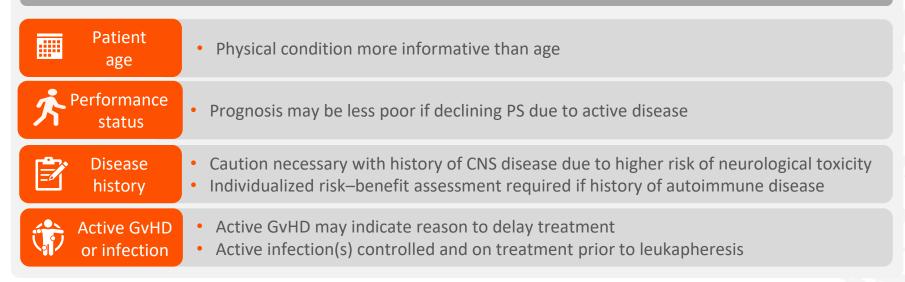
Who is eligible for CAR T-cell therapy, and why is early referral essential?

Prof. Dr. Marion Subklewe

Attending Physician, Hematology/Oncology, Head of the CAR T-cell therapy programme, University Hospital of Munich (LMU), Munich, Germany

Which patients are currently eligible for anti-CD19 CAR T-cell therapies?

Eligibility criteria in key trials


	JULIET: tisagenlecleucel in DLBCL ^{1,3}	ZUMA-1: axicabtagene-ciloleucel in LBCL ^{2,3}	
Disease status	Relapsed or refractory disease; previously received ≥2 lines of therapy		
Age	≥18 years		
Performance status	ECOG performance status 0 or 1		
History of CNS disease	Active CNS involvement due to malignancy excluded	Excluded if detectable malignant cells in cerebrospinal fluid or brain metastases, or a history of either	
Prior allo-SCT	Excluded		
Systemic immunosuppressants	Immunosuppressive medication to be stopped >4 weeks prior to enrolment		
History of autoimmune disease	Not an exclusion criterion		
History of malignancy	No previous or concurrent malignancy except basal or squamous cell carcinoma, <i>in situ</i> breast or cervical cancer adequately treated and recurrence-free for ≥3 years, primary malignancy resected and in remission ≥5 years	No previous malignancy other than non-melanoma skin cancer or <i>in situ</i> carcinoma (e.g. cervical, bladder, breast) or follicular lymphoma, unless disease-free for ≥3 years	
Previous CAR T-cell therapy	Not applicable in trials	Excluded	
Prior anti-CD19/CD-3 BiTE antibody or any CD19 therapy	Excluded Excluded if prior CD19-targeted therapy		
Existing or suspected infection	Excluded if: uncontrolled active or latent HBV or active HCV; uncontrolled acute active life-threatening bacterial, viral or fungal infection	Excluded if: known history of HIV, HBV or HCV; clinically significant active infection or currently receiving intravenous antibiotics or within 7 days of enrolment	

Allo-SCT, allogeneic stem cell transplant; BiTE, bi-specific T-cell engager; CAR, chimeric antigen receptor; CD, cluster of differentiation; CNS, central nervous system; DLBCL, diffuse LBCL; ECOG, Eastern Cooperative Oncology Group; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; LBCL, large B-cell lymphoma. 1. Schuster SJ, et al. *N Engl J Med.* 2019;380:45–56; 2. Neelapu SS, et al. *N Engl J Med.* 2017;377:2531–44; 3. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316.

• Eligibility considerations for CAR T-cell therapy

Patient medical history, physical condition, current and prior therapies are important guiding factors

CAR, chimeric antigen receptor; CNS, central nervous system; GvHD, graft-versus-host-disease; PS, performance status. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316.

What factors may influence the decision to treat a patient with CAR T-cell therapy?

Treatment decisions require a multifaceted approach

Factors guiding decisions to treat with CAR T-cell therapy¹⁻⁴

Patient status

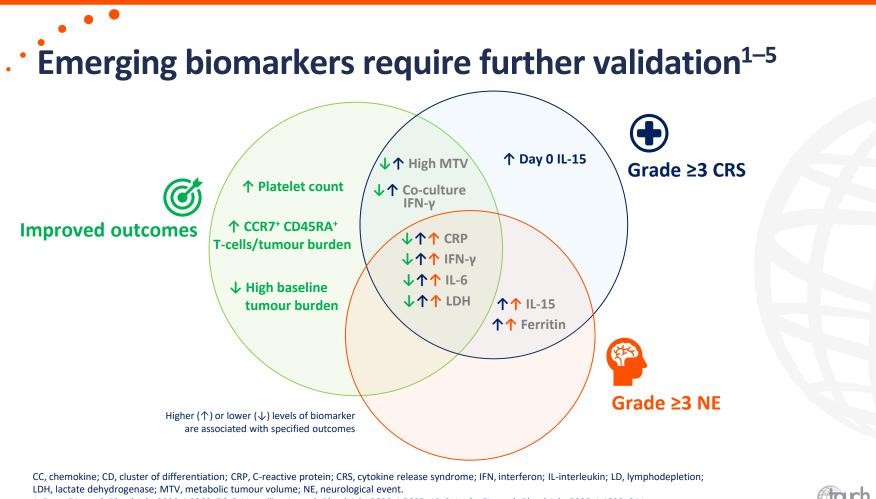
- Age
- Fitness
- Performance status
- o Co-morbidities
- Organ function
- Inflammatory markers

Disease status

- NHL histology
- Non-FL transformation
- CNS involvement
- Tumour volume

Other

- o CAR T-cell fitness
- Need for urgent therapy
- Logistics of treatment
- Psychosocial factors
- Financial/reimbursement


Collective MDT decision making in a designated centre for CAR T-cell therapy is advised

Allo-SCT, allogeneic stem cell transplant; CAR, chimeric antigen receptor; CNS, central nervous system; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MDT, multidisciplinary team; NHL, non-Hodgkin lymphoma; PMBCL, primary mediastinal large B-cell lymphoma; tFL, transformed FL. 1. Smith S, et al. *Am J Hematol.* 2019;94:E117–20; 2. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316; 3. Locke FL, et al. *Blood Adv.* 2020;4:4898–911; 4. Kansagara A, et al. *Am Soc Clin Oncol Educ Book*. 2020;40:e27–34.

What possible biomarkers could be used in the future to better identify patients who may benefit from CAR T-cell therapies?

1. Dean EA, et al. Blood Adv. 2020;4:3268–76; 2. Vercellino L, et al. Blood Adv. 2020;4:5607–15; 3. Locke FL, et al. Blood Adv. 2020;4:4898–911;

4. Turtle CJ, et al. Sci Transl Med. 2016;8:355ra116; 5. Du M, et al. Biomark Res. 2020;8:13.

When should a patient be referred for assessment for treatment with CAR T-cell therapy?

Early and broad referral for timely treatment is advised

Optimizing access to CAR T-cell therapy in eligible patients requires early consideration

When should we refer?

- Where primary refractory disease is suspected
- Following first-line relapse as patient commences salvage chemotherapy with a plan for auto-SCT but consider CAR T-cell therapy if inadequate response or disease progression following ≤2 cycles

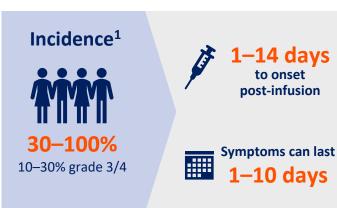
Why early and broad referral?

- Patient condition and PS more suited to therapy
- Avoid toxicities from ineffective chemotherapies
- Facilitates coordination of treatment logistics to avoid unnecessary delays, such as:
 - Referral to expert centre
 - MDT assessment(s)
 - Collection, work-up and manufacture

How are the toxicities associated with CAR T-cell therapy best managed?

Dr Maeve O'Reilly

Consultant Haematologist, University College Hospital, London, UK



What are the short-term safety considerations associated with CAR T-cell therapy, and how are they best managed?

Clinical features²

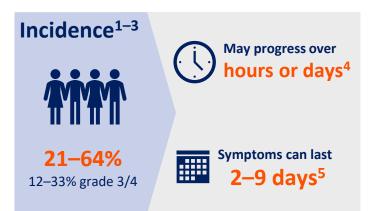
- Fever
- Hypoxia
 - Vasodilatory shock
- Capillary leak
- End-organ dysfunction

Risk factors¹

- Tumour burden
- CAR T-cell dose and construct
- Active infection at infusion
- Lymphodepletion regimen

CAR, chimeric antigen receptor. 1. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316; 2. Frey N, Porter D. *Biol Blood Marrow Transplant*. 2019;25:e123–7.

CRS: Assessment, grading and safety management


ASTCT consensus grading system for CRS¹

Grade 1	Grade 2	Grade 3	Grade 4		
<mark>↓</mark> Temperature ≥38°C with:					
No hypotension	Hypotension Not requiring vasopressors	Hypotension Vasopressor ± vasopressin	Hypotension Multiple vasopressors (excluding vasopressin)		
	and/or	and/or	and/or		
No hypoxia	Hypoxia Low-flow nasal cannula/blow-by	Hypoxia High-flow nasal cannula, face mask, nonrebreather mask or Venturi mask	Hypoxia Requiring positive pressure		
	Grade 2	CRS: Alert ICU if no response t	o tocilizumab		
	In addition to symptomatic measures, tocilizumab or corticosteroids may be administered				

ASTCT, American Society for Transplantation and Cellular Therapy; CRS, cytokine release syndrome; ICU, intensive care unit. 1. Lee DW, et al. *Biol Blood Marrow Transplant*. 2019;25:625–38; 2. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316.

• Neurological toxicity (ICANS)

Clinical features^{5,6}

- Non-specific, ranging in severity from mild confusion to coma
- Early manifestations include:
 - Tremor
 - Dysgraphia
 - Expressive speech difficulties

Risk factors include:⁵

- Tumour burden
- > P
 - Prior CNS-directed therapies
 - Previous meningeal involvement

> ALL

ALL, acute lymphoblastic leukaemia; CNS, central nervous system; ICANS, immune effector cell-associated neurotoxicity syndrome. 1. Schuster SJ, et al. *N Engl J Med.* 2019;380:45–56; 2. Neelapu SS, et al. *N Engl J Med.* 2017;377:2531–44; 3. Locke FL, et al. *Lancet Oncol.* 2019;20:31–42; 4. Lee DW, et al. *Biol Blood Marrow Transplant.* 2019;25:625–38; 5. Yakoub-Agha I, et al. *Haematologica.* 2018;105:297–316; 6. Siegler EL, Kenderian SS. *Front Immunol.* 2020;11:1973.

ICANS: Grading and safety management

ASTCT consensus grading system for ICANS¹

Grade 1	Grade 2	Grade 3	Grade 4
ICE 7–9	ICE 3–6	ICE 0–2	ICE 0
 Drowsiness but patient awakens spontaneously 	 Drowsiness but awakens to voice 	 Awakens only to tactile stimulus Clinical or electrographic seizure Focal or local oedema on neuroimaging 	 Unable to rouse patient Unable to ICE-assess Prolonged or repetitive electrographic seizures Deep focal motor weakness Diffuse cerebral oedema on neuroimaging

ALERT ICU with rapid access to neurological expertise^{1,2} (grades 3–4, transfer to ICU)^{3*}

Management may require cross-sectional imaging, electroencephalography, and CSF examination²

*Hospital capacity and policies governing escalating care for patients experiencing serious complications of CAR T-cell therapy may vary locally.¹ ASTCT, American Society for Transplantation and Cellular Therapy; ATMP, advanced therapy medicinal products; CSF, cerebrospinal fluid; ICANS, immune effector cell-associated neurotoxicity syndrome; ICE, Immune Effector Cell-Associated Encephalopathy; ICU, intensive care unit; NHS SPS, National Health Service (UK) Specialist Pharmacy Service. 1. Lee DW, et al. *Biol Blood Marrow Transplant*. 2019;25:625–38; 2. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316; 3. NHS SPS Pan UK Working Groups for ATMPs. Diagnosis and Management of Acute CAR-T Cell Toxicities in Adults Version 1.0, December 2020. Available at: <u>www.sps.nhs.uk/wp-content/uploads/2020/12/Diagnosis-and-medical-management-of-acute-CAR-T-cell-toxicities-in-Adults-V1.pdf</u> (accessed 08 January 2021).

Infection risk associated with CAR T-cell therapy

Bacterial infections are most common¹

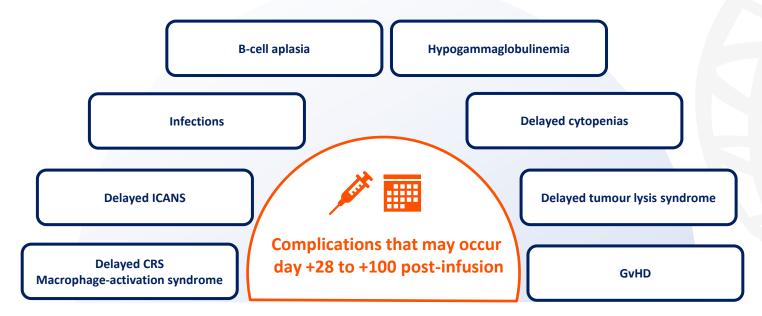
Beyond 30 days respiratory viral infections predominate¹

Risk factors^{1–4}

CRS

- Combined effects of prior therapies
- ALL diagnosis
- Prolonged cytopenias
- CAR T-cell dose
- Steroid use

ALL, acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; CRS, cytokine release syndrome. 1. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316; 2. Vora SB, et al. *Open Forum Infect Dis*. 2020;7:ofaa121; 3. Wudhikarn K, et al. *Blood Cancer J*. 2020;10:79; 4. Hill JA, et al. *Blood*. 2018;131:121–30.

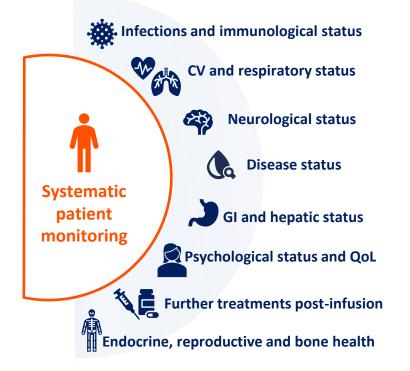


What medium-term safety considerations do HCPs need to be aware of and how can they be optimally managed?

CAR T-cell therapy: Medium-term complications

Vigilance through monitoring of patients during medium-term follow-up

CAR, chimeric antigen receptor; CRS, cytokine release syndrome; GvHD, graft versus host disease; ICANS, immune effector cell-associated neurotoxicity syndrome. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316.



What are the key long-term safety considerations associated with CAR T-cell therapy, and how are they best managed?

• CAR T-cell therapy: Long-term safety considerations

Main complications include prolonged cytopenias and hypogammaglobulinemia

*Follow-up schedule may vary according to local policies and practice guidelines. CAR, chimeric antigen receptor; CV, Cardiovascular; GI, gastrointestinal; QoL, quality of life. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316. **'Late-effects' monitoring** in stable patients in ongoing remission

- Attentive and regular follow-up tailored to individual patient*
- Monitoring could be performed by CAR T-cell therapy specialist centre or referring clinician

How can we safely and effectively manage our patients in the community setting?

Effective communication and an MDT approach are key

CAR T-cell specialist centre

Complete documentation Discharge notes and

- clinical records
- Follow-up protocol and policies

healthcare centre

- Patient/caregiver awareness of CRS/ICANS
- Rapid access to specialist treatment/readmission

Long-term MDT follow-up Review disease status and late-effects of CAR T-cell therapy and prior treatments

- CAR T-cell therapy treating physician
- Nurse specialists
- Other specialists
- Clinical trial staff
- Data managers

CAR T-cell therapy in B-cell ALL: Where are we now?

Prof. Adriana Balduzzi

Associate Professor of Pediatrics, Pediatric Department, University of Milano Bicocca, Monza, Italy

What is the current status of CAR T-cell therapies in the clinical management of B-cell ALL?

Expanding options for CAR T-cell therapies in B-cell ALL

Brexucabtagene autoleucel

Trial in progress

ZUMA-4: paediatric and young adult patients aged ≤ 21 years¹

Lisocabtagene maraleucel

Trial in progress

NCT03743246: paediatric and young adult patients aged ≤25 years⁷

Tisagenlecleucel

Approved in paediatric and young adult patients aged ≤25 years with B-cell ALL that is:

refractory, in relapse post-transplant or, in second or later relapse²

refractory or in second or later relapse³

Trials in progress

CASSIOPEIA: high-risk paediatric and young adult patients; first-line in MRD+ after EOC⁴

NCT04225676: paediatric and young adult patients; reinfusion in patients experiencing loss of B-cell aplasia⁵

NCT04156659: Chinese cohort aged ≤25 years⁶

Multiple ongoing academic trials: CARPALL: paediatric and adult patients aged ≤24 years;⁸ CART19-BE-01: paediatric and adult;⁹ CARCIK: paediatric and adult post-HSCT¹⁰

ALL, acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; EOC, end of consolidation therapy; HSCT, haematopoietic stem cell transplant; MRD+, minimal residual disease positive; R/R, relapsed or refractory. 1. NCT02625480; 2. EMA SmPC: tisagenlecleucel; 3. FDA PI: tisagenlecleucel; 4. NCT03876769; 5. NCT04225676; 6. NCT04156659; 7. NCT03743246; 8. Ghorashian S, et al. *Nat Med*. 2019;25:1408–14; 9. Ortíz-Maldonado V, et al. *Mol Ther*. 2020;S1525-0016(20)30484-6 [online ahead of print]; 10. Magnani CF, et al. *J Clin Invest*. 2020;130:6021–33. EMA SmPC and FDA PI available at: <u>www.ema.europa.eu/</u> and <u>www.fda.gov/</u> (accessed 11 January 2021). NCT information available at: <u>https://clinicaltrials.gov/</u> (accessed 11 January 2021).

How effective are CAR T-cell therapies for B-cell ALL?

CAR T-cell therapies: Efficacy in B-cell ALL

ELIANA (updated analysis)^{1,2}

🖋 tisa-cel

- Aged between ≥3 and ≤21 years
- No prior anti-CD19 therapy
- 113 patients screened, 97 enrolled, 79 infused
 - Median age: 11 years (range 3–24)
 - Median prior lines of therapy: 3 (range 1–8)
 - Prior SCT: 61%
 - Median follow-up: 24.2 months (range 4.5–35.1)

ORR 82%

95% CI 72-90%

64/65 responders achieved MRD-negative bone marrow

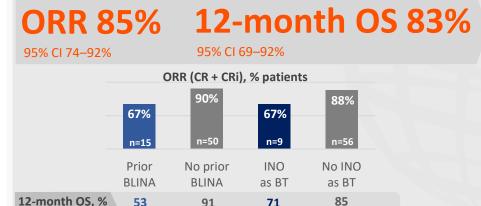
Probability at 24 months of:

RFS 62% 95% CI 47–75% in responders (N=65) **OS 66%** 95% CI 54–76% in all patients (N=79)

Relapses: 73.7% CD19-negative

• Aged up to 25 years

- ≥2 relapses, refractory or post-alloSCT relapse
- Prior anti-CD19/CD22 therapy permitted: BLINA exposure (n=15) or INO as BT (n=9)
- 80 screened, 73 enrolled, 67 infused


(95% CI) (19–78)

 Median age: 10 years (range 2–33)

(69 - 93)

Median follow-up:
 9.6 months (range 0.2–16.5)

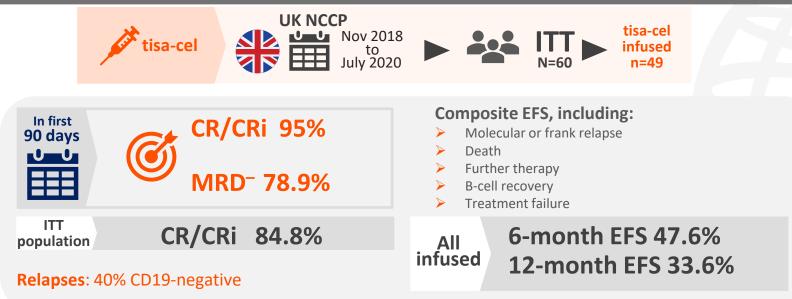
(23 - 92)

(74 - 97)

B2001X^{3,4}

🖉 tisa-cel

ALL, acute lymphoblastic leukaemia; allo-SCT, allogeneic stem cell transplant; BLINA, blinatumomab; BT, bridging therapy; CAR, chimeric antigen receptor; CD, cluster of differentiation; CI, confidence interval; CR, complete response; CRi, CR with incomplete haematological recovery; EFS, event-free survival; INO, inotuzumab; MRD, minimal residual disease; ORR, overall remission rate; OS, overall survival; RFS, relapse-free survival; SCT, stem cell transplant; tisa-cel, tisagenlecleucel. 1. Grupp SA, et al. *Blood.* 2018;132(Suppl. 1):895; 2. Grupp SA, et al. *Biol Blood Marrow Transplant.* 2019;25(Suppl):S126–7; 3. Krueger J, et al. *J Clin Oncol.* 2020;38(Suppl. 15):10518; 4. NCT03123939. Available at: <u>https://clinicaltrials.gov/ct2/show/NCT03123939</u> (accessed 11 January 2021).



What have we learned so far about CAR T-cell therapies for B-cell ALL in the real-world setting?

CAR T-cell therapy in B-cell ALL: UK NCCP experience

Greater proportion of CD19⁺ vs CD19⁻ relapses observed compared with ELIANA trial

ALL, acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; CD, cluster of differentiation; CR, complete response; CRi, CR with incomplete haematological recovery; EFS, event-free survival; ITT, intention-to-treat; MRD, minimal residual disease; OS, overall survival; tisa-cel, tisagenlecleucel; UK NCCP, United Kingdom National CAR T-cell Clinical Panel. Ghorashian S, et al. *Blood.* 2020;136(Suppl. 1):1016.

CAR T-cell therapy in B-cell ALL: PRWCC experience

Real-world effectiveness of tisa-cel is comparable with ELIANA trial results

Treatment response

Medi follow	ian ^{up} 11. month (0.2-28.	2 r	CRR TT: 79% used: 85%		relapsed responders CD19
	DoR		75%		63%
Ø	OS	6 months	85%	12 months	72%
	EFS		64%		51%

Response by disease burden

	12-month OS (p<0.0001)	12-month EFS (p<0.0001)
High disease burden	58%	34%
Low disease burden	85%	69%
No detectable disease	95%	72%

ALL, acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; CD, cluster of differentiation; CD19⁻, CD19 negative; CRR, complete response rate; DoR, duration of response; EFS, event-free survival; ITT, intention-to-treat; OS, overall survival; PRWCC, Pediatric Real World CAR Consortium; tisa-cel, tisagenlecleucel. Schultz LM, et al. *Blood*. 2020;136(Suppl. 1):14–15.

How can we identify patients with B-cell ALL who may benefit from CAR T-cell therapy?

[•] Baseline MDT assessment may guide patient selection^{1,2}

 Σ Timely referral of patients eligible for CAR T-cell therapy is needed to optimize outcomes

Informed consent for CAR T-cell therapy must be obtained from the patient and/or their guardians and, where appropriate, child assent should be given

CAR, chimeric antigen receptor; DLI, donor-lymphocyte infusion; GvHD, graft-versus-host disease; MDT, multidisciplinary team; PS, performance status. 1. Yakoub-Agha I, et al. *Haematologica*. 2018;105:297–316; 2. Mahadeo KM, et al. *Nat Rev Clin Oncol*. 2019;16:45–63.

What are the possible adverse events with CAR T-cell therapy in patients aged under 25 years, and how can they be optimally managed?

CAR T-cell therapies: Safety in B-cell ALL

ELIANA (updated analysis)¹

N=79

CRS 77% (49% grade 3/4)

💉 tisa-cel

Median time to onset: **3** days (range 1–22) Median duration: **8** days (range 1–36)

NEs 39% (13% grade 3/4)

Median time to onset: 7 days

CRS management

ICU admission 48% Intubation 15%

-~~-

Tocilizumab 39% Corticosteroids 20% High-dose vasopressors 24% **B2001X**²

tisa-cel

N=67

CRS 64% (28% grade 3/4)

Median time to onset: 5 days (range 1–13) Median duration: 7 days (range 1–27)

NEs 24% (11% grade 3/4)

CRS management

ICU admission 28% Intubation 7%

Tocilizumab 27% Corticosteroids 6% Siltuximab 3% High-dose vasopressors 22%

ALL, acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; CRS, cytokine release syndrome; ICU, intensive care unit; NE, neurological event; tisa-cel, tisagenlecleucel. 1. Grupp SA, et al. *Blood.* 2018;132(Suppl. 1):Abstract 895; 2. Krueger J, et al. *J Clin Oncol.* 2020;38:10518.

Real-world safety: UK NCCP and PRWCC experiences

Grade ≥3 CRS 20.4%

LCU managed 22.0%

Grade ≥3 CRS 19.0%

Grade ≥3 NEs 7.0%

Tocilizumab administered 26.0%

Steroids administered 14.0%

CRS, cytokine release syndrome; ICU, intensive care unit; NE, neurological event; PRWCC, Pediatric Real World CAR Consortium; UK NCCP, United Kingdom National CAR T-cell Clinical Panel. 1. Ghorashian S, et al. *Blood.* 2020;136(Suppl. 1):1016; 2. Schultz LM, et al. *Blood.* 2020;136(Suppl. 1):14–15.

What are the new and emerging indications for CAR T-cell therapy?

Dr Michael Dickinson

Consultant Haematologist and Lead of the Aggressive Lymphoma disease group, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia



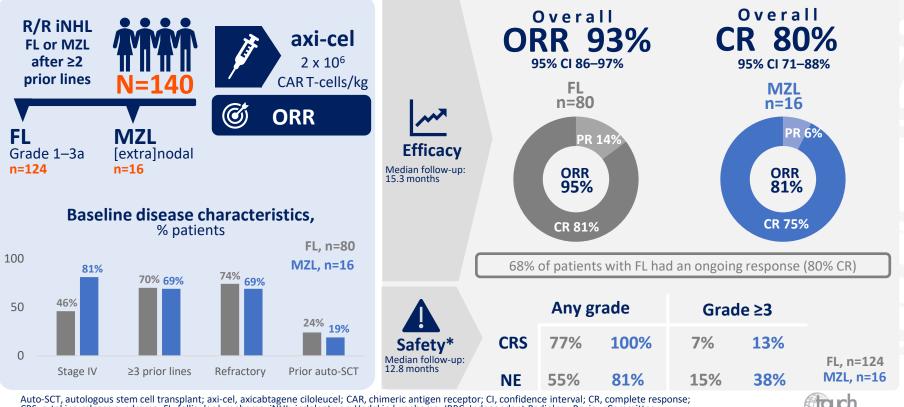
For which new indications are CD19-targeting CAR T-cell therapies being explored and why are additional treatment options needed for these patients?

[•] CAR T-cell therapy: Clinical potential in MCL, FL and MZL

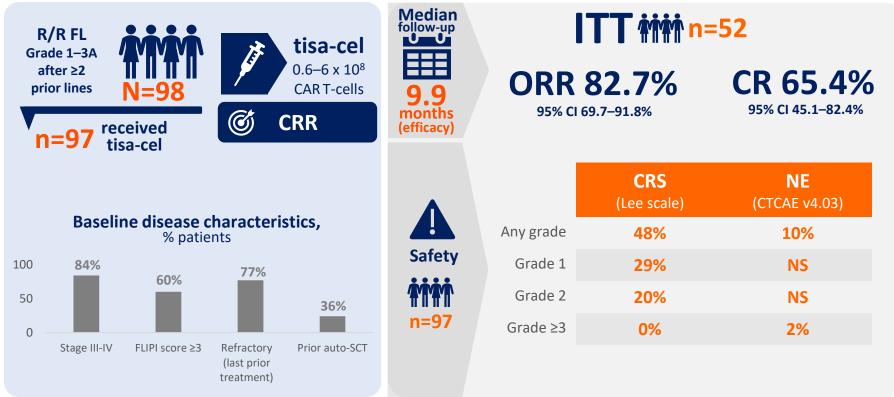
Potential for CAR T-cell therapies to address existing challenges and unmet needs

MCL, FL and MZL are incurable with current treatments and patients inevitably relapse 6,7

CAR T-cell therapy may be able to induce durable complete remissions in patients with MCL, FL and MZL^{1,5,8}


Axi-cel, axicabtagene ciloleucel; brexu-cel, brexucabtagene autoleucel; CAR, chimeric antigen receptor; EMA, European Medicines Agency; FDA, US Food and Drug Administration; FL, follicular lymphoma; iNHL, indolent non-Hodgkin lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PI, prescribing information; tisa-cel, tisagenlecleucel. 1. Wang M. et al. N Engl J Med. 2020;382:1331-42; 2. FDA PI: brexucabtagene autoleucel, July 2020; 3. EMA Proceedings of CHMP Meeting 12-15 October 2020. Available at www.ema.europa.eu/en/news/meeting-highlights-committee-medicinal-products-human-use-chmp-12-15-october-2020; 4. Dickinson M, et al. J Clin Oncol. 2019;37:TPS7573; 5. Jacobson C, et al. J Clin Oncol. 2020;38:8008; 6. Abramson JS, et al. Am Soc Clin Oncol Educ Book. 2020;40:302–13; 7. Denlinger NM, et al. Cancer Manag Res. 2018;10:615–24; 8. Fowler NH, et al. Blood. 2020;136:DOI:10.1182/blood-2020-138983.

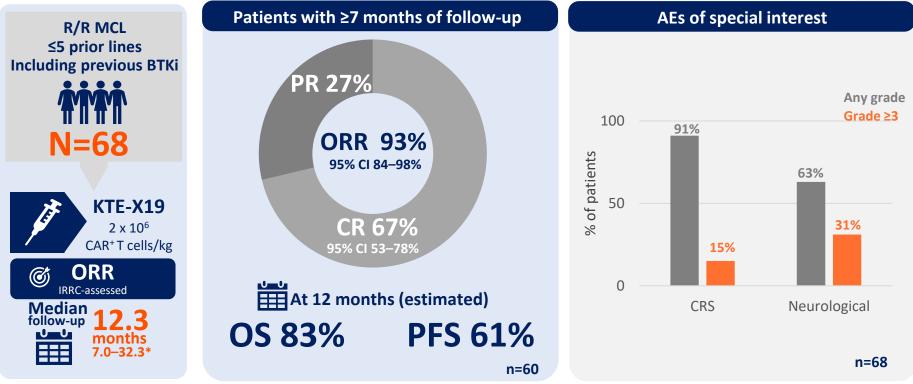
How safe and effective are CAR T-cell therapies in indolent NHL in the clinical trial setting?


[•] ZUMA-5: Phase II evaluation of axi-cel in iNHL

ONCOLOGY®

Auto-SCT, autologous stem cell transplant; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CI, confidence interval; CR, complete response; CRS, cytokine release syndrome; FL, follicular lymphoma; iNHL, indolent non-Hodgkin lymphoma; IRRC, Independent Radiology Review Committee; MZL, marginal zone lymphoma; NE, neurological event; PR, partial response; ORR, objective response rate; R/R, relapsed or refractory. Jacobson C, et al. J Clin Oncol. 2020;38(Suppl 15):8008 (Presented at ASCO20 Virtual Scientific Program; 29–31 May 2020).

ELARA: Phase II evaluation of tisa-cel in FL


Auto-SCT, autologous stem cell transplant; CAR, chimeric antigen receptor; CI, confidence interval; CR, complete response; CRR, complete response rate; CRS, cytokine release syndrome; CTCAE, Common Terminology for Adverse Events; FL, follicular lymphoma; FLIPI, Follicular Lymphoma International Prognostic Index; ITT, intention-to-treat (population); NE, neurological event; ORR, objective response rate; NS, not specified; R/R, relapsed or refractory; tisa-cel, tisagenlecleucel. Fowler NH, et al. *Blood*. 2020;136:DOI:10.1182/blood-2020-138983.

How safe and effective are CAR T-cell therapies in MCL in the clinical trial setting?

. ZUMA-2: Brexu-cel (KTE-X19) in MCL

*Range. AE, adverse event; brexu-cel, brexucabtagene autoleucel; BTKi, Bruton tyrosine kinase inhibitor; CAR, chimeric antigen receptor; CI, confidence interval; CR, complete response; CRS, cytokine release syndrome; IRRC, independent radiologic review committee; MCL, mantle cell lymphoma; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; R/R, relapsed or refractory. Wang M, et al. N Engl J Med. 2020;382:1331–42.

How will CD19-targeting CAR T-cell therapies influence future practice in the clinical management of B-cell malignancies?

• CAR T-cell therapy: New horizons in emerging indications

Recent approval for CAR T-cell therapy in MCL (FDA)¹

Promising early data for CAR T-cell therapy in FL and MZL^{2,3}

CAR, chimeric antigen receptor; FDA, US Food and Drug Administration; FL, follicular lymphoma; MCL, mantle-cell lymphoma; MZL, marginal zone lymphoma. 1. FDA. FDA approves first cell-based gene therapy for patients with relapsed or refractory MCL. Available at: <u>www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-relapsed-or-refractory-mcl</u>. Accessed November 2020; 2. Jacobson C, et al. *J Clin Oncol*. 2020;38:8008; 3. Fowler NH, et al. *Blood*. 2020;136:DOI:10.1182/blood-2020-138983.

