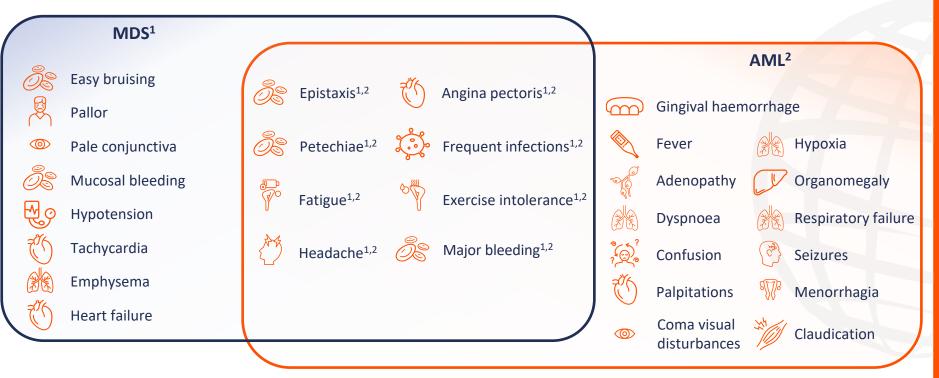
Higher-risk MDS and AML: How new guidelines are changing diagnosis, classification and management

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME accepts no responsibility for errors or omissions

Presenting symptoms and the diagnostic process for MDS and AML


Prof. Andrew Wei

Peter MacCallum Cancer Centre, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia

Presenting symptoms of MDS and AML

AML, acute myeloid leukaemia; GI, gastrointestinal; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); WHO, World Health Organization.

1. Barzi A, Sekeres MA. Cleve Clin J Med. 2010;77:37–44; 2. Smith M, et al. Crit Rev Oncol Hemat. 2004;50:197–222.

AML, acute myeloid leukaemia; CCUS, clonal cytopenia of undetermined significance; ICC, International Consensus Classification; ICUS, idiopathic cytopenia of undetermined significance; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); WHO, World Health Organization. 1. Samiev D, et al. *Korean J Fam Med*. 2014;35:111–8; 2. Fenaux P, et al. *Ann Oncol*. 2021;32:142–56; 3. Khoury JD, et al. *Leukemia*. 2022;36:1703–19.

Diagnosing MDS or AML

Laboratory parameters (MDS only)¹ Blood counts (MDS only)¹

- Ferritin
- Transferrin
- Transferrin saturation
- Reticulocyte counts
- Vitamin B12
- Folate concentrations
- Haptoglobin
- Creatinine levels

Evaluate cytopenia

Cytomorphology

• Dysplastic features

Cytomorphology

- Dysplastic features
- Blast counts

Cytogenetics

Molecular studies

Cellularity and fibrosis

AML, acute myeloid leukaemia; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); WHO, World Health Organization.

1. Fenaux P, et al. Ann Oncol. 2021;32:142–56; 2. Heuser M, et al. Ann Oncol. 2020;31:697–712.

Categorization of MDS by WHO and ICC

Blast burden	Genetic	WHO 2022 ¹				ICC 2022 ²
	del(5q)	MDS-5q				MDS-del(5q)
BM blasts <5%	SF3B1	MDS- <i>SF3B1</i>			enetic *	MDS-SF3B1
C PB blasts <2%	Other	MDS-LB			AML with defining gene abnormalities*	MDS, NOS Without dysplasia or with SL/ML dysplasia
BM blasts 5–9%		MDS-IB1		MDS- bi <i>TP53</i>		MDS-EB ⁺
BM blasts 10–19% PB blasts 5–19% Auer rods		MDS-IB2	MDS-f			MDS/AML [‡] Unless AML-defining cytogenetic or molecular abnormality*

*AML except BCR::ABL and CEBPA mut (>20% blasts required). [†]PB blasts 2–9%. [‡]PB blasts 5–19% and no requirement for auer rods.

AML, acute myeloid leukaemia; BM, bone marrow; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); MDS-EB, MDS with excess blasts; MDS-f, MDS with fibrosis; MDS-IB, MDS with increased blasts; MDS-LB, MDS with low blasts; MDS-NOS, MDS not otherwise specified; ML, multilineage; PB, peripheral blood; SL, single lineage; WHO, World Health Organization. 1. Khoury JD, et al. *Leukemia*. 2022;36:1703–19; 2. Arber DA, et al. *Blood*. 2022;140:1200–28.

WHO 2022 classification of AML¹

Myeloid neoplasm post-cytotoxic therapy¹

AML with defining genetic abnormalities¹

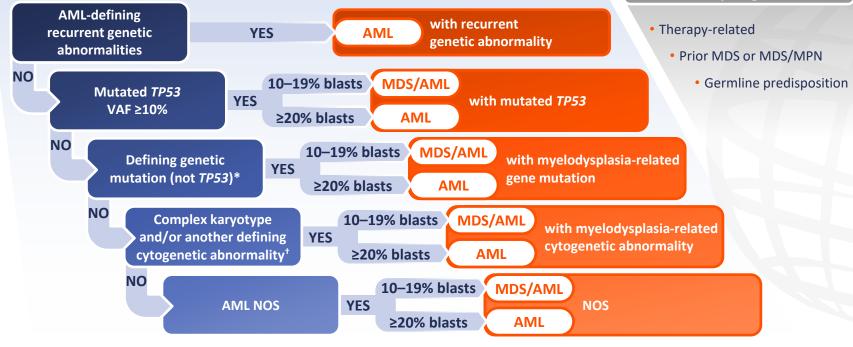
AML, myelodysplasia-related¹

AML with other defined genetic alterations²

AML defined by differentiation¹

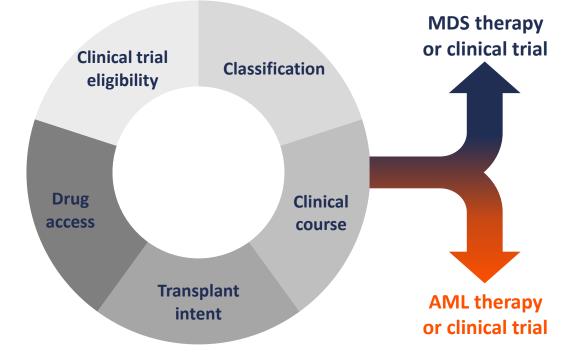
m apy ¹		 Acute promyelocytic leukaemia with PML::RARA fusion AML with RBM15::MRTFA fusion AML with RUNX1::RUNX1T1 fusion AML with BCR::ABL1 fusion AML with CBFB::MYH11 fusion AML with KMT2A rearrangement AML with CBFA mutation
ng ties ¹		Defining cytogenetic abnormalities
lies-		 Complex karyotype (≥3 abnormalities) 12p del or loss of 12p due to unbalanced translocation Defining somatic mutations ASXL1
a-related ¹		 Sq del or loss of 5q due to unbalanced translocation Monosomy 13 or 13q del 17p del or loss of 17p due to unbalanced translocation 17p del or loss of 17p due to unbalanced translocation Isochromosome 17q Idic(X)(q13)
lefined ions ²	~	AML with AML with KAT6A::CREBBP fusion AML with MNX1::ETV6 fusion AML with FUS::ERG fusion AML with NPM1::MLF fusion
		AML with minimal differentiation Acute basophilic leukaemia Acute erythroid leukaemia*
ntiation1	+	 AML with maturation AML with maturation AML with maturation AML with maturation Acute monocytic leukaemia Acute monocytic leukaemia

*Previously pure erythroid leukaemia. AML, acute myeloid leukaemia; WHO, World Health Organization.


1. Khoury JD, et al. Leukemia. 2022;36:1703–19; 2. Li W. In: Li W (ed). Leukemia. Brisbane, Australia: Exon Publications, 2022;1–21.

Hierarchical classification of AML: ICC

≥10% myeloid blasts or blast equivalents in the bone marrow or blood


Diagnostic qualifiers appended to any diagnosis

ONCOLOGY

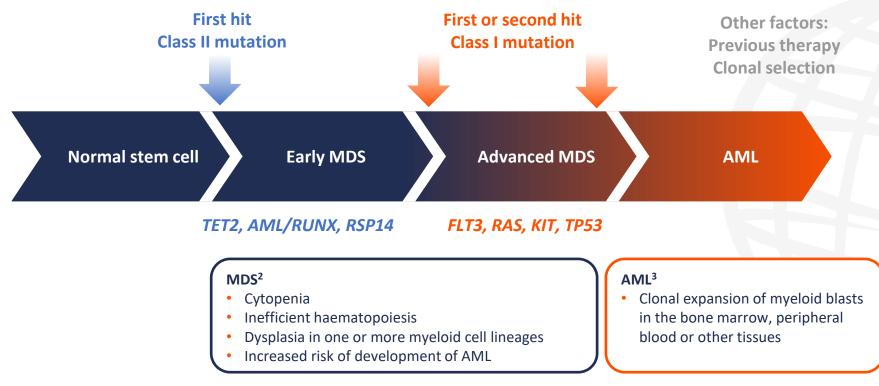
*ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and/or ZRSR2. [†]del(5q)/t(5q)/add(5q), -7/del(7q), +8, del(12p)/t(12p)/(add(12p), i(17q), -17/add(17p)/del(17p), del(20q) or idic(X)(q13). AML, acute myeloid leukaemia; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); MPN, myeloproliferative neoplasms; NOS, not otherwise specified; VAF, variant allele frequency; WHO, World Health Organization. Döhner H, et al. *Blood*. 2022;140:1345–77.

MDS vs AML: Treatment considerations^{1–3}

AML, acute myeloid leukaemia; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); WHO, World Health Organization.

1. Fenaux P, et al. Ann Oncol. 2021;32:142–56; 2. Heuser M, et al. Ann Oncol. 2020;31:697–712; 3. Döhner H, et al. Blood. 2022;140:1345–77.

Pathophysiology of MDS and AML and how it relates to disease classification


Prof. Agnieszka Wierzbowska

Medical University of Łódź, Copernicus Memorial Hospital, Łódź, Poland

Model of progression from MDS to AML¹

WHO and ICC classification comparison

WHO¹

MDS = myelodysplastic neoplasms

MDS = myelodysplastic syndromes

ICC²

MDS with defining genetic abnormalities

- MDS with low blasts and isolated 5q deletion
- MDS with low blasts and SF3B1 mutation
- MDS with biallelic *TP53* inactivation

MDS, morphologically defined

- MDS with low blasts (MDS-LB)
- MDS, hypoplastic (MDS-h)
- MDS with increased blasts (MDS-IB)
 - MDS-IB1
 - o MDS-IB2
 - MDS with fibrosis (MDS-f)

- MDS with mutated SF3B1
 MDS with mutated TP53
 MDS, not otherwise specified (MDS, NOS)

 MDS, NOS without dysplasia
 - MDS, NOS without dysplasia
 MDS, NOS with single lineage dysplasia
 - MDS, NOS with single inleage dysplasia
 MDS, NOS with multilineage dysplasia
 - MDS with excess blasts (MDS-EB)
- MDS/AML

MDS with del(5q)

- MDS/AML with mutated TP53
- MDS/AML with myelodysplasia-related gene mutations
- MDS/AML with myelodysplasia-related cytogenetic abnormalities
- MDS/AML, not otherwise specified

AML, acute myeloid leukaemia; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); WHO, World Health Organization.

1. Khoury JD, et al. Leukemia. 2022;36:1703–19; 2. Arber DA, et al. Blood. 2022;140:1200–28.

Validation of MDS guideline updates (1/3)

Retrospective, single-centred cohort study of patients with MDS

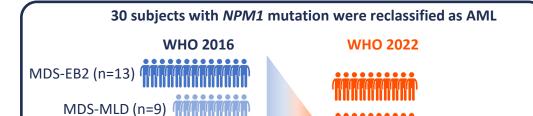
WHO 2022 classification	% lower-risk patients	Median OS
Genetically definedMDS-SF3B1MDS-biTP53	91 (IPSS-R/IPSS-M) 14 (IPSS-R/IPSS-M)	7.0 years 0.8 years
 Morphologically defined MDS-LB MDS-IB1 MDS-IB2 	71 (IPSS-R/IPSS-M) 21 (IPSS-R); 16 (IPSS-M) 0 (IPSS-R); 7 (IPSS-M)	NR NR 1.5 years

- Differing mutational features were prominently associated with both morphologically and genetically defined subgroups
- OS differed between the defined subgroups

IPSS-M, international prognostic scoring system – molecular; IPSS-R, IPSS – revised; MDS, myelodysplastic neoplasms; MDS-bi*TP53*, MDS with biallelic *TP53* inactivation; MDS-IB, MDS with increased blasts; MDS-LB, MDS with low blasts; MDS-*SF3B1*, MDS with low blasts and *SF3B1* mutation; NR, not reached; OS, overall survival; WHO, World Health Organization. Khanna V, et al. *Blood*. 2022;140(Suppl. 1):6955–7.

Validation of MDS guideline updates (2/3)

Patients with newly diagnosed MDS based on WHO 2016 criteria


MDS-EB1 (n=6)

N=852

MDS-U (n=2)

Reclassified according to WHO 2022 guidelines

Aug 2016 → Sep 2021

WHO 2022 classification	Median OS
MDS-5q	24 months
MDS-SF3B1	58 months
MDS-bi <i>TP53</i>	10 months
MDS-LB	Unreached
MDS-h	Unreached
MDS-IB1	24 months
MDS-IB2	26 months
MDS-f	15 months

AML, acute myeloid leukaemia; MDS, myelodysplastic neoplasms; MDS-biTP53, MDS with biallelic TP53 inactivation; MDS-EB, myelodysplastic syndromes with excess blasts; MDS-f, MDS with fibrosis; MDS-h, MDS, hypoplastic; MDS-IB, MDS with increased blasts; MDS-LB, MDS with low blasts; MDS-MLD, myelodysplastic syndromes with multilineage dysplasia; MDS-SF3B1, MDS with low blasts and SF3B1 mutation; MDS-U, myelodysplastic syndromes, unclassifiable; OS, overall survival; WHO, World Health Organization. Zhang Y, et al. Blood. 2022;140(Suppl. 1):1343-5.

AML (n=30)

Validation of MDS guideline updates (3/3)

Retrospective, single-centred cohort study of patients with MDS

Reclassified by WHO 2022 and ICC 2022 proposed criteria

WHO 2022

MDS-IB1 and MDS-IB2 had similar mOS (p=0.726)

WHO 2022 and ICC 2022

- MDS with mutated SF3B1 had best mOS across all subtypes
- Categories for MDS-mTP53 had worst survival of all subtypes

ICC 2022

 MDS-MLD had significantly worse mOS compared with MDS-SLD (49.6 months vs 79.4 months; p<0.001)

ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); MDS-IB, MDS with increased blasts; MDS-MLD, myelodysplastic syndromes with multilineage dysplasia; MDS-m*TP53*, MDS with mutated *TP53*; MDS-SLD, MDS with single lineage dysplasia; mOS, median overall survival; WHO, World Health Organization. Ball S, et al. *Blood*. 2022;140(Suppl. 1):1118–20.

Impact of WHO and ICC 2022 on AML diagnosis

1,451 non-therapy-related cases with MDS or AML according to 2017 revised 4th edition WHO guidelines

WHO 2022 guidelines

- 746 patients diagnosed with AML
- <1% of cases were upgraded from MDS to AML compared with the revised 4th edition WHO guidelines

ICC 2022 guidelines

- 742 patients diagnosed with AML
- 137 patients diagnosed with MDS/AML
- **10%** of cases were upgraded from MDS to AML compared to the revised 4th edition WHO guidelines, mainly due to the introduction of the MDS/AML class

4/16 patients with MDS-EB2 according to the revised 4th edition WHO guidelines were upgraded to AML using both the WHO 2022 and ICC 2022 guidelines

AML, acute myeloid leukaemia; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); MDS-EB, myelodysplastic syndrome with excess blasts; WHO, World Health Organization. Huber S, et al. *Blood*. 2022;140(Suppl. 1):555–6.

Updated prognostic risk stratification and its impact on patient management

Prof. Gert Ossenkoppele

Vrije Universiteit University Medical Center, Amsterdam, Netherlands

Comparison between IPSS-R and IPSS-M

IPSS-M

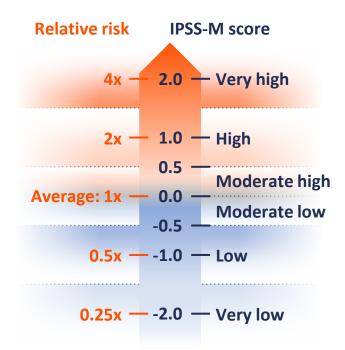
IPSS-R

Risk based on haematologic and cytogenetic features

- 5 cytogenetic risk categories
- Haemoglobin level
- Marrow blast percentage
- Platelet count

Factors from IPSS-R conserved in IPSS-M

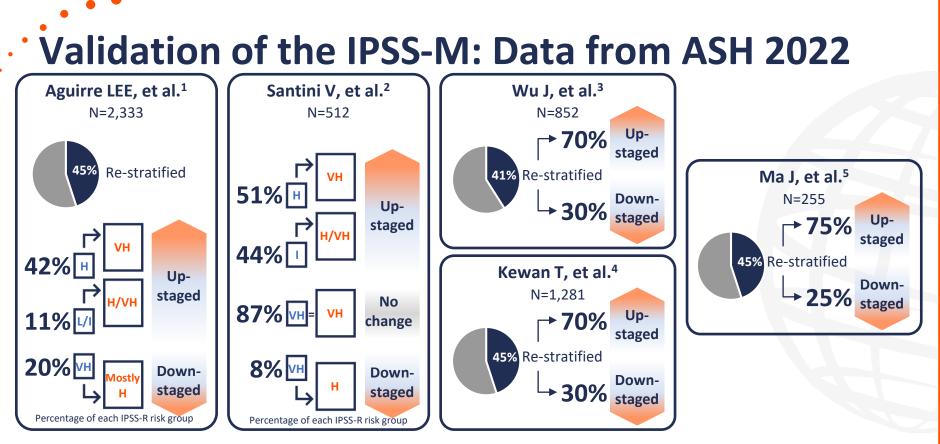
Risk based on haematologic parameters, cytogenetic abnormalities and somatic mutations


Additional factors in IPSS-M

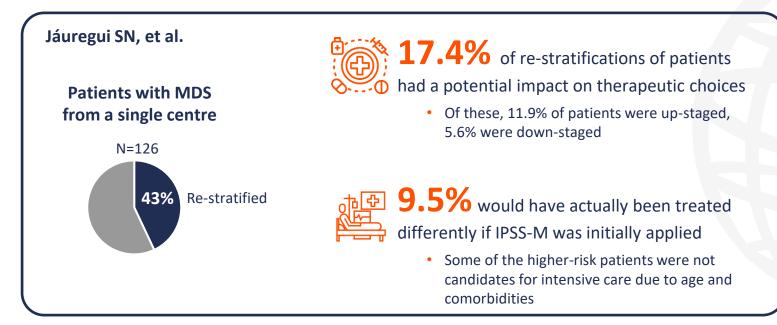
- 16 main effect genes
- 15 residual genes
- Mutations associated with worse outcome:
 - TP53^{multihit}
 - o FLT3
 - MLL^{PTD}

IPSS-M risk categories

The IPSS-M score corresponds to the relative risk compared with an 'average' patient



A patient's IPSS-M score can be calculated using the <u>IPSS-M web calculator</u>*


*www.mds-risk-model.com IPSS-M, Molecular International Prognostic Scoring System. Bernard E, et al. *NEJM Evidence*. 2022;1:EVIDoa2200008.

ASH, American Society of Hematology; H, high risk; I, intermediate risk; IPSS, International Prognostic Scoring System; L, low risk; M, Molecular; R, Revised. sig, significant; VH, very high risk. 1. Aguirre LEE, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 465; 2. Santini V, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 559; 3. Wu J, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 1780; 4. Kewan T, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 465; 5. Ma J, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 465; 5. Ma J, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 400.

Real-world use of IPSS-R vs IPSS-M: Data from ASH 2022

ASH, American Society of Hematology; IPSS, International Prognostic Scoring System; M, Molecular; ICC, International Consensus Classification; MDS, myelodysplastic neoplasms (WHO 2022)/myelodysplastic syndromes (ICC 2022); R, Revised; WHO, World Health Organization. Jáuregui SN, et al. Presented at: 64th ASH Annual Meeting, New Orleans, LA, USA. 10–13 December 2022. Abstr 3096.

ELN 2022: Genetic risk classification changes

- FLT3-ITD allelic ratio is no longer considered in the risk classification
 - AML with *FLT3*-ITD (without adverse-risk genetic lesions) is categorized in the intermediate-risk group, irrespective of allelic ratio or concurrent presence of an *NPM1* mutation
- AML with myelodysplasia-related gene mutations are now in the adverse-risk group
 - Mutations include pathologic variants in at least one of the following:
 - ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2
- In-frame mutations in the leucine zipper region of CEBPA are now classified in the favourable-risk group
 - Classification is irrespective of biallelic or monoallelic mutations
- The presence of adverse-risk cytogenetic abnormalities in NPM1-mutated AML are now classified as adverse risk
- Additional disease-defining, recurring cytogenetic abnormalities are now in the adverse-risk group
 - Include mutations in t(3q26.2;v) involving the *MECOM* gene, or t(8;16)(p11.2;p13.3) associated with *KAT6A::CREBBP* gene fusion
- Hyperdiploid karyotypes with multiple trisomies are no longer on the list of complex karyotypes or in the adverse risk group

