Immune checkpoint inhibitors in solid tumours: Optimizing outcomes through multidisciplinary collaboration

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

Prof. Ken Kato

Medical oncologist, National Cancer Center Hospital, Tokyo, Japan

Ms Tara Hurley Oncology nurse,

Royal Marsden NHS Foundation Trust, Sutton, UK

Dr Alison Palumbo

Clinical oncology pharmacist, Oregon Health and Science University, Portland, Oregon, USA

Prof. Albrecht Stenzinger

Pathologist, University Hospital Heidelberg, Heidelberg, Germany

Treatment landscape for solid tumours

Top-line overview of FDA-, EMA- and PMDA-approved immune checkpoint inhibitors*1

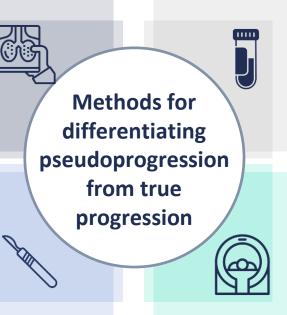
	Biliary tract Basal cell Colorectal Endometrial								Μ	Merkel cell Oesophageal				Renal cell		Urothelial					
		cancer	са	rcinon	na	cance	r	cance	: r	HCC	Μ	elano	oma ca	arcinor	na	SCC	C	arcinor	ma ca	arcinon	na
	ASPS		Breast cancer		Cervica cancer		Cutaneo SCC		Gastric carcinom		Head an neck SC		Meso- theliom		NSCLC		esopha carcino	- I	SCLC		
Atezolizumab	•		•							•		•			$\bullet \bullet \bullet$				••	•	
Avelumab														$\bullet \bullet \bullet$				••		••	
Cemiplimab				••			••								••						
Dostarlimab								••													
Durvalumab																			••		
Ipilimumab						$\bullet \bullet \bullet$				•					••		•	•••			
Nivolumab						••			•••	•	•••	•••				••	•••	•••		••	
Pembrolizumab						••	•	••	•	•				•			••				
Tremelimumab										•••)				$\bullet \bullet \bullet$						

● FDA approved ● EMA approved ● PMDA approved

*ICIs approved as monotherapy and/or in combination with another ICI or chemotherapy depending on the indication – see individual prescribing information for full details. ASPS, alveolar soft part sarcoma; EMA, European Medicines Agency; FDA, United States Food and Drug Administration; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; PMDA, Pharmaceuticals and Medical Devices Agency; SCC, squamous cell carcinoma; SCLC, small-cell lung carcinoma.

1. Data for each immune checkpoint inhibitor from FDA prescribing information (www.accessdata.fda.gov/scripts/cder/daf/index.cfm), EMA summary of product characteristics (www.ema.europa.eu/en/medicines) and Japan PMDA (www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html), as applicable (accessed 9 May 2023).

Pseudoprogression during immunotherapy


Pseudoprogression is an increase in the size of the primary tumour or the appearance of a new lesion, followed by tumour regression

Retrospective image analysis

Primary method for confirming pseudoprogression, but could result in premature cessation of effective treatment

Biopsy

An effective method for confirming pseudoprogression but is invasive; liquid biopsy may be an effective alternative in the future

Biomarkers

Potential association between pseudoprogression and a decrease or low level of ctDNA and IL-8

Medical imaging techniques

PET imaging may help to identify early and delayed pseudoprogression but further research is needed

Common immune-related adverse events (1/2)

Cutaneous irAEs

- Inflammatory dermatoses
- Bullous dermatoses
- Severe cutaneous adverse reactions

≤71.5% of patients

Time to onset 3–6 weeks after therapy initiation Most common irAE

Gastrointestinal irAEs

- Colitis
- Gastritis
- Hepatitis
- Enterocolitis

Lower GI toxicities more common than upper GI toxicities

Colitis: 8–27% of patients* Diarrhoea: ≤54% of patients*

Median time to onset 6 weeks after therapy initiation

*In patients treated with combination therapy. GI, gastrointestinal; irAE, immune-related adverse event. Schneider BJ, et al. *J Clin Oncol*. 2021;9:4073–126.

Endocrine irAEs Characterized by the gland/organ affected Primary hypothyroidism Hypophysitis Thyrotoxicosis Diabetes Primary adrenal insufficiency Clinically significant endocrinopathy: 10% of patients Median time to onset 14.5 weeks after therapy initiation

Respiratory irAE

Pneumonitis

10% of patients*

Median time to onset 34 weeks after therapy initiation

Uncommon but potentially serious

Common immune-related adverse events (2/2)

Haematologic irAEs

- Haemolytic anaemia
- Acquired TTP
- Haemolytic uraemic syndrome
- Aplastic anaemia
- Lymphopenia
- Immune thrombocytopenia
- Acquired haemophilia A

Haemolytic anaemia: 9.8% of patients

Median time to onset 5.7 weeks after therapy initiation

Renal irAEs

- Nephritis
- Acute kidney injury

Acute kidney injury: 4.5% of patients*

Median time to onset 14 weeks after therapy initiation

*In patients treated with combination therapy.

irAE, immune-related adverse event; TTP, thrombotic thrombocytopenic purpura. Schneider BJ, et al. *J Clin Oncol.* 2021;9:4073–126.

Neurologic irAEs

- Myasthenia gravis or myasthenic syndrome
- Aseptic meningitis
- Encephalitis
- Guillain–Barré-like syndrome
- Variety of other peripheral neuropathy phenotypes and demyelinating disorders

12.0% of patients*

Median time to onset 4 weeks after therapy initiation

Cardiovascular irAEs

- Myocarditis
- Pericarditis
- Venous thromboembolismImpaired ventricular

ONCOLOGY

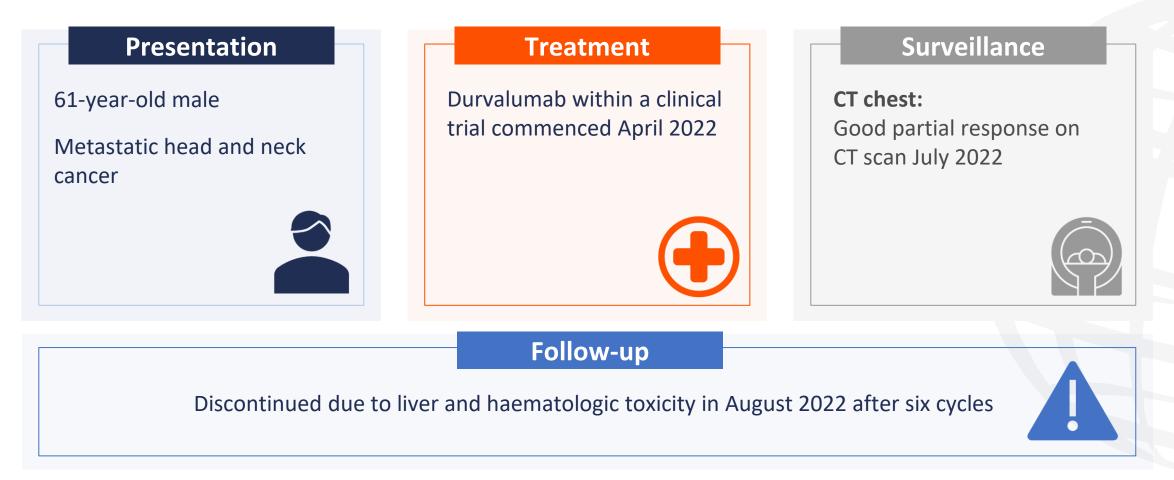
- Arrhythmias function with heart failure
- Arrhythmias functi Vasculitis

<0.3% of patients*

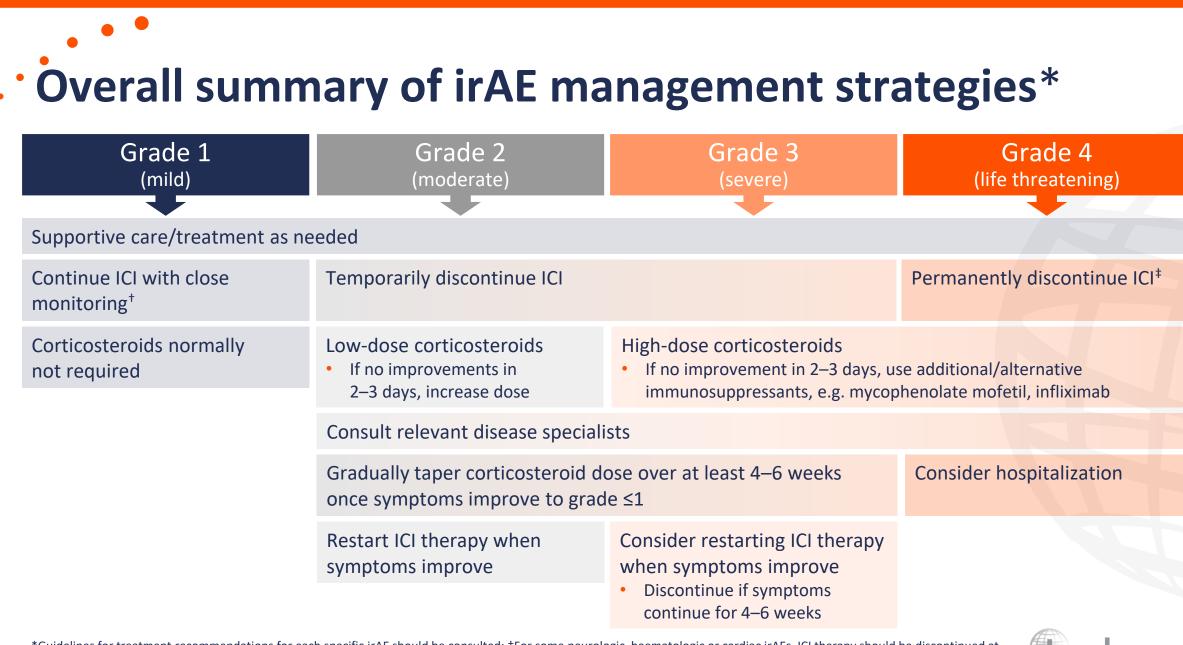
Median time to onset 6 weeks after therapy initiation

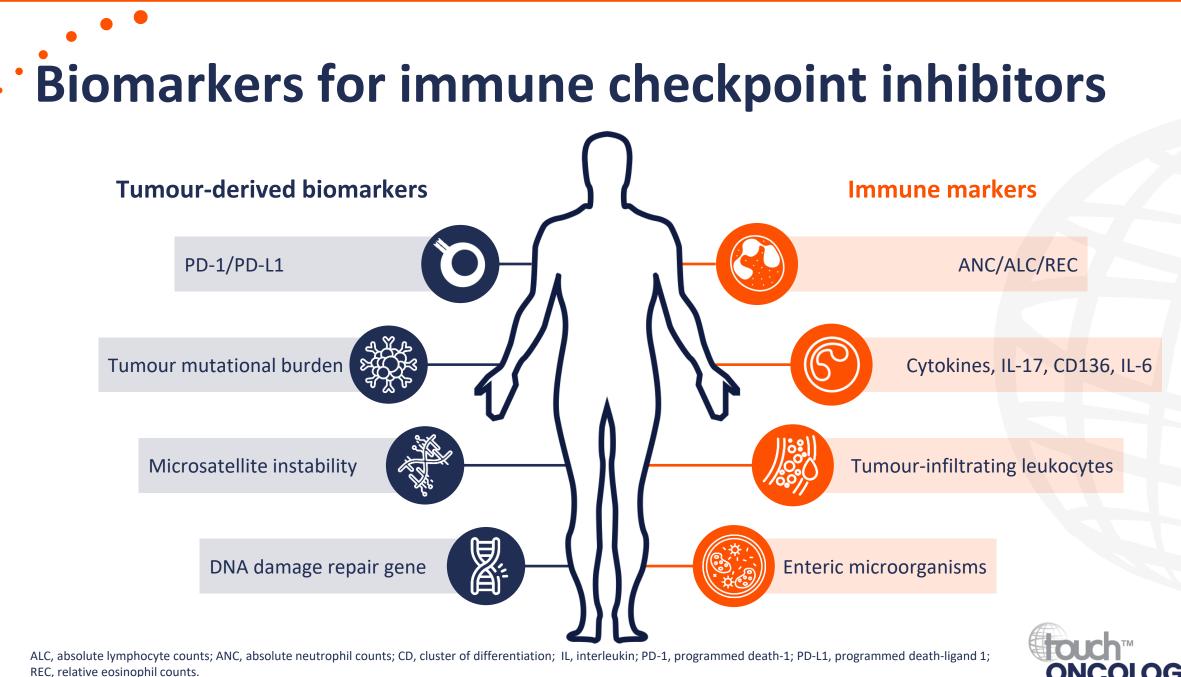
High mortality risk

· Common immune-related adverse events


Associations by class

	Monot	herapy	Combination therapy				
PD-1	PD-L1	CTLA-4	ICI + ICI	ICI + VEGF			
Cemiplimab Nivolumab Pembrolizumab	Atezolizumab Avelumab Durvalumab	Ipilimumab	Most common irAEsGI-associatedHepatic	 Most common irAEs Negative cardiac effects 			
Most common in to CTLA-4 • Rheumatic • Auto-immune		Generally greater incidence of irAEs and of higher severity compared with PD-1/PD-L1	 Endocrine (thyroid) Fatigue Nausea Rash 	Transaminitis/hepaticGI-associated			
Musculoskele	etal	Most common relative to					
Thyroid		PD-1/PD-L1	ICI + CT	ICI + EGFR			
 Pulmonary Infusion-related reactions Oral mucositis Myasthenia gravis 		 GI-associated Hypophysitis fatigue Ophthalmologic Dermatologic 	 Lower overall risk of high-grade AEs relative to CT alone, except for neuropathy 	Most common irAEsPulmonaryHepatic			


AE, adverse event; CT, chemotherapy; CTLA-4, cytotoxic T-lymphocyte antigen-4; EGFR, epidermal growth factor receptor; GI, gastrointestinal; ICI, immune checkpoint inhibitor; irAE, immune-related AE; PD-1, programmed death receptor-1; PD-L1, programmed death receptor ligand-1; VEGF, vascular endothelial growth factor. Olsen TA, et al. *Front Endocrinol.* 2022;13:779915.



*Guidelines for treatment recommendations for each specific irAE should be consulted; †For some neurologic, haematologic or cardiac irAEs, ICI therapy should be discontinued at any grade until the nature of the irAE is defined; [†]Therapy with ICI can continue if the grade 4 irAE is an endocrinopathy that can be controlled with hormone replacement. ICI, immune checkpoint inhibitor; irAE, immune-related adverse event. Medina P, et al. *J Pharm Pract.* 2020;33:338–49.

Li N. et al. Biomed Pharmacother. 2022:147:112470.

ONCOLOGY