What's on the horizon to tackle unmet needs in recurrent/metastatic SCCHN?

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

Unmet treatment needs for patients with recurrent/metastatic SCCHN

Dr Aline Chaves Medical Oncologist and Director of the DOM Oncology Group, Divinópolis, Brazil

What is the current standard of care for patients with R/M SCCHN?

*Guidelines include alternative treatment options.

5-FU, 5-fluorouracil; BSC, best supportive care; ChT, chemotherapy; CPS, combined positive score; EHNS, European Head and Neck Society; ESMO, European Society for Medical Oncology; ESTRO, European SocieTy for Radiotherapy and Oncology; IO, immunotherapy; NCCN, National Comprehensive Cancer Network; PD-L1, programmed death-ligand 1; PS, performance status; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck; SOC, standard of care. 1. NCCN. Head and neck cancers. V2.2024. Available at: <u>www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf</u> (accessed January 2024); 2. Machiels J-P, et al. *Ann Oncol.* 2020;31:1462–75; 3. Keam B, et al. *ESMO Open.* 2021;6:100309.

What are the key considerations for selecting a therapeutic strategy for individual patients with R/M SCCHN?

et Oncol. 2021;22:463-75.

5-FU, 5-fluorouracil; PD-L1, programmed death-ligand 1.

1. Kaidar-Person O, et al. Drug Resist Updat. 2018;40:13-6; 2. Johnson DE, et al. Nat Rev Dis Primers. 2020;6:92; 3. Guigay J, et al. Lancet Oncol. 2021;22:463-75.

What are some of the challenges to manage when treating patients with the EXTREME regimen?

Adverse events associated with the EXTREME regimen*

Fluorouracil component of EXTREME regimen is associated with mucositis and diarrhoea^{1,2}

What role do currently approved immunotherapies play in improving outcomes in patients with R/M SCCHN?

Long-term outcomes with ICIs for R/M SCCHN

Study	КЕҮМОТ	KEYNOTE-048 ¹		
Study agents	Pembrolizumab vs EXTREME regimen*	Pembrolizumab + ChT vs EXTREME regimen*	Nivolumab vs investigator's choice	
Key efficacy results	 PD-L1 CPS ≥20 Median OS: 14.9 mos vs 10.8 mos ORR: 23.3% vs 36.1% PD-L1 CPS ≥1 Median OS: 12.3 mos vs 10.4 mos ORR: 19.1% vs 34.9% Total population Median OS: 11.5 mos vs 10.7 mos ORR: 16.9% vs 36.0% 	 PD-L1 CPS ≥20 Median OS: 14.7 mos vs 11.1 mos ORR: 43.7% vs 38.2% PD-L1 CPS ≥1 Median OS: 13.6 mos vs 10.6 mos ORR: 37.2% vs 35.7% Total population Median OS: 13.0 mos vs 10.7 mos ORR: 36.3% vs 36.3% 	 24-month OS: 20.4% vs 3.8% 24-month PFS: 14.8% vs 0% ORR: 20.0% vs 11.5% Median DoR: NR with nivolumab 	
Summary	With a 4-year follow-up, 1L pembrolizu	mab alone and pembrolizumab + ChT	With a 2-year follow-up, an OS benefit with nivolumab was maintained	

val benefit compared with cetuximab ChT in R/M SCCHN with nivolumab was maintained compared with investigator's choice

Direct comparisons between trials should not be made due to differences in trial design. *Cetuximab + platinum + 5-FU.

5-FU, 5-Fluorouracil; 1L, first-line; ChT, chemotherapy; CPS, combined positive score; DoR, duration of response; ICI, immune checkpoint inhibitor; mo, month;

NR, not reached; ORR, objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival;

R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck.

1. Harrington KJ, et al. J Clin Oncol. 2023;41:790-802; 2. Gillison ML, et al. Oncologist. 2022;27:e194-8.

Which patients with R/M SCCHN will benefit from treatment with immunotherapy with or without chemotherapy versus chemotherapy alone?

Tumour microenvironment of SCCHN

CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte associated protein 4; IDO1, indoleamine 2,3-dioxygenase-1; IFNγ, interferon gamma; IL, interleukin; LAG3, lymphocyte activation gene 3; MDSC, myeloid-derived suppressor cells; MHC, major histocompatibility complex; NK, natural killer; PD1, programmed cell death 1; PD-L1/L2, programmed death-ligand 1/2; SCCHN, squamous cell carcinoma of the head and neck; STAT3, signal transducer and activator of transcription 3; TCR, T-cell receptor; TGF-β, transforming growth factor beta; TIGIT, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains; TIM3, T-cell immunoglobulin mucin-3; TNF-α, tumour necrosis factor alpha; Treg, regulatory T cell; VEGF, vascular endothelial growth factor. Chen SMY, et al. *Mol Carcinog.* 2020;59:766–74.

ONCOLOGY

Future treatment directions: Immunotherapy-based strategies

Prof. Makoto Tahara

Chief of the Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan

What is the rationale for additional immunotherapy-based treatment options for R/M SCCHN?

Outcomes with approved ICIs for R/M SCCHN

	First-line setting	Second-li	ne setting
Study	KEYNOTE 048 ¹	KEYNOTE 040 ²	CheckMate 141 ³
Treatment	Pembrolizumab vs Pembrolizumab + platinum + 5-FU vs EXTREME regimen*	Pembrolizumab vs Methotrexate, docetaxel or cetuximab	Nivolumab VS Methotrexate, docetaxel or cetuximab
Key efficacy results	<pre>PD-L1 CPS ≥20 mOS: 14.9 vs 10.7 mos / 14.7 vs 11.0 mos mPFS: 3.4 vs 5.0 mos / 5.8 vs 5.2 mos ORR: 23% vs 36% PD-L1 CPS ≥1 mOS: 12.3 vs 10.3 mos / 13.6 vs 10.4 mos mPFS: 3.2 vs 5.0 mos / 5.0 vs 5.0 mos ORR: 19% vs 35% Total population mOS: 11.6 vs 10.7 mos / 13.0 vs 10.7 mos mPFS: 2.3 vs 5.2 / 4.9 vs 5.1 mos ORR: 17% vs 36%</pre>	Intention-to-treat • mOS: 8.4 vs 6.9 mos Total population • mPFS: 2.1 vs 2.3 mos	Total population • mOS: 7.5 vs 5.1 mos • mPFS: 2.0 vs 2.3 mos • ORR: 13.3% vs 5.8%

Direct comparisons between trials should not be made due to differences in trial design.

*Cetuximab + platinum + 5-FU.

5-FU, 5-fluorouracil; CPS, combined positive score; ICI, immune checkpoint inhibitor; m, median; mos, months; ORR, objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck. 1. Burtness B, et al. *Lancet*. 2019;394:1915–28; 2. Cohen EEW, et al. *Lancet*. 2019;393:156–67; 3. Ferris RL, et al. *N Engl J Med*. 2016;375:1856–67.

What immunotherapy-based strategies are currently under investigation for R/M SCCHN?

Key immunotherapeutic approaches in development

Clinical development landscape in patients with R/M SCCHN

ADC, antibody–drug conjugate; ChT, chemotherapy; CTLA-4, cytotoxic T-lymphocyte associated protein 4; ICI, immune checkpoint inhibitor; LAG3, lymphocyte activation gene 3; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck; TKI, tyrosine kinase inhibitor. 1. Fayette J, et al. *J Clin Oncol.* 2023;41(Suppl. 16):Abstr 6003; 2. Dzienis MR, et al. *Ann Oncol.* 2022;33(Suppl. 7):S839–40; 3. Wise-Draper TM, et al. *Am Soc Clin Oncol Educ Book.* 2022;42:1–14; 4. Parmar K, et al. *Cancer Treat Res Commun.* 2022;33:100649; 5. Rottey S, et al. *J Immunother Cancer.* 2022;10(Suppl. 2):A597; 6. Cohen EEW, et al. *J Clin Oncol.* 2023;41(Suppl. 16):TPS6104; 7. Dennis MJ, et al. *Oral Oncol.* 2022;135:106219; 8. ClinicalTrials.gov. NCT06062420 Available at: <u>https://clinicaltrials.gov/study/NCT06062420</u> (accessed January 2024); 9; ClinicalTrials.gov. NCT04225117 Available at: <u>https://clinicaltrials.gov/study/NCT04225117</u> (accessed January 2024); 10. ClinicalTrials.gov. NCT04389632 Available at: <u>https://clinicaltrials.gov/study/NCT04389632</u> (accessed January 2024); 11. Cohen EEW, et al. Presented at: AACR Annual Meeting 2023, Orlando, FL, USA. 14–19 April 2023. Abstr. CT012; 12. Hanna GJ, et al. *Ann of Oncol.* 2023;34(Suppl. 2):S582–3.

What are the latest clinical trial data for investigational immunotherapy-based combinations with chemotherapy or cetuximab for patients with R/M SCCHN?

Latest data for ICIs plus ChT for R/M SCCHN

Combination		Durvalumab + carboplatin + paclitaxel ¹	Pembrolizumab + carboplatin + paclitaxel ²	Ongoing trials	
Study		Phase II FRAIL-IMMUNE	Phase IV KEYNOTE-B10	Phase II NCT04282109 (NIVOTAX) ³ • 1L nivolumab + paclitaxel in	
Setting	ł	First-line treatment in frail patients with R/M SCCHN not amenable to cisplatin-based ChT N=64	First-line treatment of patients with previously untreated R/M SCCHN N=92	patients with R/M SCCHN ineligible for cisplatin-based Ch Phase II NCT04858269 ³	
Key efficacy results		 mOS: 18 months 24-month OS: 45% mPFS: 7.0 months ORR: 71% mDoR: 5.9 months Grade ≥3 AEs: 20.3% 	 mOS: 12.1 months n=82 12-month OS: 58% mPFS: 5.6 months ORR: 43% mDoR: 5.5 months Grade ≥3 AEs: 71% 	 1L pembrolizumab + carbopl + paclitaxel in patients with F SCCHN unable to take 5-FU Phase II NCT06052839³ Pulsed-dosed carboplatin + paclitaxel + pembrolizumab i 1L R/M SCCHN 	
Direct comparis	ons betw	The combination of PD-1/PD-L1 inhi demonstrated anti-tumour activit patients with een trials should not be made due to differences in trial design.	bitors plus carboplatin and paclitaxel ty and tolerable toxicity profiles in R/M SCCHN ^{1,2}		

5-FU, fluorouracil; AE, adverse event; ChT, chemotherapy; DoR, duration of response; ICI, immune checkpoint inhibitor; m, median; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck.

1. Fayette J, et al. *J Clin Oncol*. 2023;41(Suppl. 16):Abstr 6003; 2. Dzienis MR, et al. *Ann Oncol*. 2022;33(Suppl. 7):S839–40; 3. ClinicalTrials.gov. Available at: <u>https://clinicaltrials.gov/;</u> clinical trials searchable by NCT number (accessed January 2024).

Latest data for ICIs plus cetuximab for R/M SCCHN

Combination		Pembrolizumab + cetuximab ¹	Avelumab + cetuximab ²	Nivolumab + cetuximab ³	Durvalumab + cetuximab ⁴
Study	P	Phase II NCT03082534	Phase II NCT03494322	Phase I/II NCT03370276	Phase II NCT03370276
Setting	ł	Platinum-resistant or platinum- ineligible patients with R/M SCCHN N=33	Patients with R/M SCCHN, no previous treatment with cetuximab N=16	Second-line and beyond treatment of patients with R/M SCCHN N=45	Patients with R/M SCCHN N=35
Key efficacy results		• ORR: 45%	 ORR: 50% n=10 CR: 20% PR: 30% 	 12-month OS: 44% 12-month PFS: 19% 	 mPFS: 5.8 months mOS: 9.6 months ORR: 39% (13/33) mDoR: 8.6 months
Key safety results		• Serious TRAEs: 15%	• Grade 3 AEs: four patients	Grade 4 TRAE: one patient	• 16 grade 3 TRAEs

Multiple studies have demonstrated consistent and promising results with PD-1/PD-L1 inhibitors plus cetuximab⁵

Direct comparisons between trials should not be made due to differences in trial design. AE, adverse event; DoR, duration of response; CR, complete response; ICI, immune checkpoint inhibitor; m, median; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PR, partial response; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck; TRAE, treatment-related AE. 1. Sacco AG, et al. *Lancet Oncol.* 2021;22:883–92; 2. Forster M, et al. *Ann Oncol.* 2020;31(Suppl. 4):S665; 3. Chung CH, et al. *Cancers (Basel).* 2021;13:1180; 4. Gulati S, et al. *Clin Cancer Res.* 2023;29:1906–15; 5. Wise-Draper TM, et al. *Am Soc Clin Oncol Educ Book.* 2022;42:1–14.

What can we learn from the latest data on novel immunotherapy-based strategies for patients with R/M SCCHN?

• PD-1/PD-L1 inhibitors in combination with CTLA-4 inhibitors Patients with R/M SCCHN

Combination	Combination 🛞 Durvalumab (D) ± tremelimumab (T)		Nivolumab (N) + ipilimumab (I) ³	
Study	EAGLE ¹ Phase III	KESTREL ² Phase III	CheckMate 714 ³ Phase II	CheckMate 651 ⁴ Phase III
Treatment	Second-line durvalumab (n=240) or durvalumab + tremelimumab (n=247) vs single-agent SoC (n=249)	First-line durvalumab (n=204) or durvalumab + tremelimumab (n=413) vs EXTREME* (n=206)	First-line nivolumab + ipilimumab (PR n=159; PE n=123) vs nivolumab + placebo (PR n=82; PE n=61)	First-line nivolumab + ipilimumab (n=472) vs EXTREME* (n=475)
Key efficacy results	mOS • D: 7.6 months • D + T: 6.5 months • SoC: 8.3 months	 mOS D: 9.9 months D + T: 10.7 months EXTREME: 10.3 months 	ORR (PR) ORR (PE) • N + I: 13.2% • N + I: 20.3% • N: 18.3% • N: 29.5%	 mOS N + I: 13.9 months EXTREME: 13.5 months

Multiple studies did not meet their primary end point (OS/ORR) when assessing the efficacy of CTLA-4 inhibition in combination with anti-PD-1/PD-L1 monoclonal antibodies compared to SoC regimens.^{1–4}

Direct comparisons between trials should not be made due to differences in trial design.

*Cetuximab + platinum + 5-FU.

5-FU, 5-fluorouracil; CTLA-4, cytotoxic T-lymphocyte associated protein 4; m, median; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PE, platinum eligible; PR, platinum refractory; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck; SoC, standard of care.

1. Ferris RL, et al. Ann Oncol. 2020;31:942–50; 2. Psyrri A, et al. Ann Oncol. 2023;34:262–74; 3. Harrington KJ, et al. JAMA Oncol. 2023;9:779–89;

4. Haddad RI, et al. J Clin Oncol. 2022;41:2166-80.

LAG3 inhibitor or TKIs in combination with ICIs

Patients with R/M SCCHN

	LAG3 inhibitor	ТКІ			
Combination	Eftilagimod alpha + pembrolizumab ¹	Cabozantinib + atezolizumab ²	Anlotinb + pembrolizumab ³	Afatinib + pembrolizumab ⁴	Lenvatinib + pembrolizumab ⁵
Study	TACTI-002 Phase II	COSMIC-021 Phase Ib	NCT04999800 Phase II	ALPHA study Phase II	LEAP-010 Phase III
Treatment	Second-line eftilagimod alpha + pembrolizumab (n=37)	Second- or third-line cabozantinib + atezolizumab (N=30)	First-line Anlotinb + pembrolizumab (N=15)	Second-line Afatinib + pembrolizumab (n=29)	First-line Lenvatinib + pembrolizumab (n=256) or placebo + pembrolizumab (n=255)
Key efficacy results	 ORR: 30% mPFS: 2.1 months mOS: 8.7 months 	 ORR: 17% mPFS: 2.9 months mOS: 9.2 months 	 ORR: 46.7% mPFS: NR mOS: NR 	mPFS: 4.1 monthsmOS: 8.9 months	 ORR: 46.1% vs 25.4%* mPFS: 6.2 vs 2.8 months* mOS: 15.0 vs 17.9 months*
Key safety results	Most common AEs: Hypothyroidism (21%) Asthenia (21%) Cough (18%)	Most common TRAEs: Fatigue (30%) Stomatitis (30%) Hypertension (27%)	Most common TRAEs: Hypertension (25%)	Most common TRAEs: Skin rash (75.9%) Diarrhoea (58.9%) Paronychia (44.8%)	Grade ≥3 TRAEs (IA2): 61.4% vs 17.8%

Direct comparisons between trials should not be made due to differences in trial design.

*Per the prespecified analysis plan, ORR and PFS are reported from the first interim analysis (IA1) and OS and DOR are reported from second interim analysis (IA2). Data cutoff dates were July 6, 2022 for IA1 and May 30, 2023 for IA2.

AE, adverse event; IA2, interim analysis 2; ICI, immune checkpoint inhibitor; LAG3, lymphocyte activation gene 3; m, median; NR, not reached. ORR, objective response rate; OS, overall survival; PFS, progression-free survival; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck; TKI, tyrosine kinase inhibitor; TRAE, treatment-related AE. 1. Doger de Spéville BD, et al. *J Clin Oncol.* 2023;41(Suppl. 16):6029; 2. Rottey S, et al. *J Immunother Cancer.* 2022;10(Suppl. 2): A597;

3. Gui L, et al. Ann Oncol. 2022;33(Suppl. 9):S1524; 4. Kao HF, et al. Clin Cancer Res. 2022;128:1560–71; 5. Licitra L, et al. Presented at: Multidisciplinary Head and Neck Cancers Symposium 2024, Phoenix, AZ, USA. 29 February–2 March 2024. Abstr.

• Other novel combinations including ICIs

Patients with R/M SCCHN

		Triplet con	Bispecific antibody		
Combination	3	Durvalumab + monalizumab + cetuximab ¹	Avelumab + palbociclib + cetuximab ²	BCA101 + pembrolizumab ³	3
Study		NCT02643550 Phase II	NCT03498378 Phase I	NCT04429542 ⁴ Phase I	
Setting	Ę	First line n=40	First line N=12	First line N=33	
Key efficacy results		ORR: 33% mPFS: 6.9 months 12-month OS: 59%	ORR: 41.7% mPFS: 6.5 months mOS: NR DCR: 75%	ORR: 48% n • ORR (HPV-): 65% (13/20) • ORR (CPS 1–19): 50% (5/1 mPFS (HPV-): NR	=31 0)
Key safety results		Grade 3 or 4 TRAEs: 48%	Any grade TRAEs: 100% Grade ≥3 TRAEs: 75%	Grade ≥3 TRAEs: 27%	

Direct comparisons between trials should not be made due to differences in trial design.

CPS, combined positive score; DCR, disease control rate; HPV, human papillomavirus ; ICI, immune checkpoint inhibitor; m, median; NR, not reached; ORR, objective response rate;

OS, overall survival; PFS, progression-free survival; R/M SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck; TRAE, treatment-related adverse event.

1. Colevas DA, et al. Ann Oncol. 2021;32(Suppl. 7):S1432; 2. Dennis MJ, et al. Oral Oncol. 2022;135:106219; 3. Hanna GJ, et al. Ann of Oncol. 2023;34:S582–S583;

4. ClinicalTrials.gov. NCT04429542. Available at: https://clinicaltrials.gov/NCT04429542 (accessed January 2024).

How do you think emerging immunotherapy-based regimens may impact the treatment landscape for R/M SCCHN in the future?

Predictive biomarkers to support treatment decisions in R/M SCCHN

Future treatment directions: Targeted therapies

Dr Ranee Mehra

Director of Head and Neck Medical Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA

What is the rationale for developing additional targeted therapies for R/M SCCHN and what novel targeted treatments are currently under investigation?

• Targeted treatments in development for R/M SCCHN

ADC, antibody-drug conjugate; AKT, serine/threonine-specific protein kinase; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-regulated kinase 1/2; HER2, human epidermal growth factor receptor 2; JAK, Janus-activated kinase; mAB, monoclonal antibody; MEK, mitogen-activated extracellular signal-regulated kinase MET, mesenchymal-epithelial transition factor; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase; RAF, rapidly accelerating fibrosarcoma; RAS, rat sarcoma; RET, rearranged during transfection; R/M SCCHN, recurrent/metastatic squamous cell carcinoma of the head and neck; ROR2, receptor tyrosine kinase-like orphan receptor 2; STAT3, signal transducer and activator of transcription 3; VEGFR, vascular endothelial growth factor receptor. 1. Li Q, et al. *Signal Transduct Target Ther*. 2023;8:31; 2. Untch BR, et al. *Cancer Res*. 2018;78:4642–57; 3. Desai A, et al. *Lung Cancer*. 2022;163:96–106; 4. Cinavqui B, et al. *Cancer Res*. 2013;34(Suppl. 2):S554–93; 7. ClinicalTrials.gov. NCT06003231. Available at: https://clinicaltrials.gov/NCT06003231 (accessed January 2024). 8. Shi F, et al. *Drug Deliv*. 2022;29: 1335–44. 9. Hollebecque A, et al. *J Clin Oncol*. 2023;41:3024; 10. Ho AL, et al. *J Clin Oncol*. 2023;41:TPS6107.

What are the latest clinical trial data for antibody-drug conjugates for patients with R/M SCCHN?

Latest data for ADCs for R/M SCCHN

ADC		Tisotumab vedotin ¹	Enfortumab vedotin ²	MRG003 ³	Ongoing studies ⁴
Study	P	Phase II innovaTV 207	Phase II EV-202	Phase II ⁴ NCT04868162	• SGN-B6A, phase I
Setting		Pts with R/M SCCHN who have received prior lines of therapy including platinum therapy (93% had received an ICI) (n=15)	Pts with la/m HNC who have previously received one platinum-based therapy (n=46)	Pts with R/M SCCHN who had progressed on at least one line of standard therapy (N=67)	 (NCT04389632) Disitamab vedotin, phase II (NCT06003231)
Key efficacy results		• ORR: 40%	 ORR: 23.9% mPFS: 3.94 months mOS: 5.98 months 	 ORR (EGFR+): 30.6% ORR:* 43% mPFS: 4.2 months mOS: 11.3 months 	 Ozuriftamab vedotin, phase II (NCT05271604)
Key safety results		 TRAEs: 13 patients Asthenia (n=7) PSN (n=7) Vomiting (n=5) 	 TRAEs of special interest: Skin reactions (45.7%) Peripheral neuropathy (32.6%) Hyperglycaemia (4.3%) 	Common TRAEs: • Constipation (25.8%) • Pruritus (24.2%) • Anaemia (22.6%)	
		ADCs have shown promising			

Direct comparisons between trials should not be made due to differences in trial design.

*In second- and third-line patients who had previously failed prior platinum and PD-1/PD-L1 inhibitor and who had received 2.3mg/kg dose of MRG003.

ADC, antibody–drug conjugate; ICI, immune checkpoint inhibitor; Ia/m HNC, locally advanced or metastatic head and neck cancer; m, median; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PSN, peripheral sensory neuropathy; pts, patients; R/M SCCHN, recurrent/metastatic

squamous cell carcinoma of the head and neck; TRAE, treatment-related adverse event.

1. Cirauqui B, et al. Cancer res. 2023;83 (Suppl. 8):CT164; 2. Swiecicki P, et al. J Clin Oncol. 2023;41:6017; 3. Xue L, et al. Ann Oncol. 2023; 34(Suppl. 2):S554–93;

4. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/; clinical trials searchable by NCT number (accessed January 2024).

What are the clinical trial data for EGFR and VEGF inhibition in patients with R/M SCCHN?

Clinical trial data for EGFR inhibition in R/M SCCHN

	EGFR inhibition	EGFR ex
Cetuximab	 The only EGFR-targeted therapy currently approved in Europe, the USA an for SCCHN¹⁻³ 	id Japan • Overe more
Panitumumab	 Phase III SPECTRUM: Panitumumab + ChT did not improve mOS; however, improved (5.8 vs 4.6 months) compared to the control group⁴ Phase II PARTNER: Panitumumab + docetaxel/cisplatin improved mPFS comwith chemotherapy alone (6.9 vs 5.5 months)⁵ 	mPFS was in HP
Dacomitinib	Phase II trials: Dacomitinib monotherapy has demonstrated antitumor activity patients with R/M SCCHN ^{6,7}	vity in 68.19
Gefitinib	• Phase III trials: Gefitinib monotherapy or gefitinib plus docetaxel failed to i efficacy vs methotrexate or docetaxel plus placebo, respectively ^{8,9}	mprove
Afatinib	• Phase III LUX-Head & Neck 1: Afatinib monotherapy induced significantly prolonged PFS (2.6 vs. 1.7 months; p=0.030) vs methotrexate for R/M SCCH	IN ¹⁰ SCCH
Other EG	GFR mAbs/inhibitors of interest in SCCHN: Nimotuzumab, lapatinib and poziotini	b ¹¹ comb

EGFR expression and HPV status

Overexpression of EGFR was observed more frequently in HPV- tumours than in HPV+ tumours¹²

Recent studies have shown inferior outcomes in patients with HPV+ SCCHN who received cetuximab in combination with RT or cisplatin¹³

Only 5% of HNC patients have EGFR alterations, which may contribute to the limited effectiveness of EGFR TKIs¹¹

Direct comparisons between trials should not be made due to differences in trial design.

ChT, chemotherapy; EGFR, epidermal growth factor receptor; HNC, head and neck cancer; HPV, human papillomavirus; m, median; mAb, monoclonal antibody; OS, overall survival; PFS, progression-free survival; R/M, recurrent/metastatic; RT, radiotherapy; SCCHN, squamous cell carcinoma of the head and neck; TKI, tyrosine kinase inhibitor. 1. EMA. Cetuximab SmPC. Available at: <u>https://bit.ly/4b14A9Q</u> (accessed January 2024); 2. FDA. Cetuximab PI. Available at: <u>https://bit.ly/47Oulrg</u> (accessed January 2024); 3. Szturz P, et al. *J Clin Oncol*. 2017;35:2229–31; 4. Vermorken JB, et al. *Lancet Oncol*. 2013;14:697–710; 5. Wirth LJ, et al. *Oral Oncol*. 2016:61:31–40; 6. Abdul Razak AR, et al. *Ann Oncol*. 2013;24:761–9; 7. Kim HS, et al. *Clin Cancer Res*. 2015;21:544–52; 8. Stewart JSW, et al. *J Clin Oncol*. 2009;27:1864–71; 9. Argiris A, et al. *J Clin Oncol*. 2013;31:1405–14; 10. Machiels JPH, et al. *Lancet Oncol*. 2015;16:583–94; 11. Li Q, et al. *Signal Transduct Target Ther*. 2023;8:31; 12. Chen Y, et al. *Int Immunopharmacol*. 2023:120:110329; 13. Alsahafi EN, et al. *Cancer Lett*. 2021:498:80–97.

Latest data for VEGF inhibition in R/M SCCHN

VEGF inhibition	1	Bevacizumab					
Study design		Phase II ¹ Previously untreated R/M SCCHN N=40	Phase III (E1305) ² Chemotherapy naive R/M SCCHN N=403	Phase II ³ R/M SCCHN with no more than one prior treatment N=46	Phase II ⁴ n=48		
Treatment	ł	Pemetrexed + bevacizumab	Platinum doublet ChT + bevacizumab vs platinum doublet ChT	Cetuximab + bevacizumab	Erlotinib + bevacizumab		
Key efficacy results		 mOS: 11.3 months ORR: 30% 	 mOS: 12.6 vs 11.0 months mPFS: 6.0 vs 4.3 months ORR: 35.5% vs 24.5% 	 mOS: 7.5 months mPFS: 2.8 months ORR: 16% 	 mOS: 7.1 months mPFS: 4.1 months 		
Key safety results		Grade 3 to 5 bleeding events: 15%	Treatment-related grade 3 to 5 bleeding events: 6.7% vs 0.5%	Grade 3 or 4 AE: <10%	Most common AE of any grade: • Rash and diarrhoea		
		The VEGF pathway is a promising therapeutic target in SCCHN; however, further studies should focus on					

minimizing unwanted adverse effects, especially bleeding events⁵

Direct comparisons between trials should not be made due to differences in trial design.

AE, adverse event; ChT, chemotherapy; m, median; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; R/M SCCHN, recurrent/metastatic squamous cell carcinoma of the head and neck; VEGF, vascular endothelial growth factor.

1. Argiris A, et al. J Clin Oncol. 2011;29:1140–5; 2. Argiris A, et al. J Clin Oncol. 2019;37:3266–74; 3. Argiris A, et al. Ann Oncol. 2013;24:220–5; 4. Cohen E, et al. Lancet Oncol. 2009;10:247–57; 5. Li Q, et al. Signal Transduct Target Ther. 2023;8:31.

What are the clinical trial data for HRAS inhibitors and PI3K/AKT/mTOR pathway inhibition for patients with R/M SCCHN?

Latest data for HRAS and PI3K inhibition in R/M SCCHN

	HRAS inhibitor	РІЗК	inhibition	
Treatment	Tipifarnib ¹	Buparlisib + cetuximab ²	Buparlisib + paclitaxel vs placebo + paclitaxel ³	Other studies investigating PI3K inhibitors
Study	Phase II NCT03719690 N=59	Phase Ib NCT01816984 (N=12)	Phase II BERIL-1 (n=158)	 Copanlisib and PX-866 demonstrated unfavourable toxicity or no improvement in
Key efficacy results	 ORR: 30% (n=50; investigator assessment) mOS: 7.0 months 	PR: 1 patient n=10 SD: 4 patients	 ORR: 39% vs 14% mOS: 10.0 vs 6.5 months 	clinical outcomes when combined with cetuximab in patients
Key safety results	Grade ≥3 TRAEs: 56% • Neutropenia (24%) • Anaemia (20%) • Leukopenia (14%) • Febrile neutropenia (7%)	Grade ≥3 AEs: 10 patients	Grade 3 or 4 AEs: • Hyperglycaemia (22% vs 3%) • Anaemia (18% vs 12%) • Neutropenia (17% vs 5%) • Fatigue (8% vs 10%)	 With R/M SCCHN⁴ Phase III BURAN study of buparlisib in patients with R/M SCCHN⁵
	Tipifarnib showed antitumor activity for patients with mutated <i>HRAS</i> SCCHN post-IO and as later-line therapy	Clinical evaluation of mainly in early	PI3K inhibitors in SCCHN is phase clinical trials ⁴	

Direct comparisons between trials should not be made due to differences in trial design.

AE, adverse event; HRAS, Harvey rat sarcoma viral oncogene homolog; IO, immunotherapy; m; median; ORR, objective response rate; OS, overall survival;

PI3K, phosphatidylinositol 3-kinase; PR, partial response; R/M, recurrent/metastatic; SCCHN, squamous cell carcinoma of the head and neck; SD, stable disease; TRAE, treatment-related AE.

1. Ho AL, et al. Ann Oncol. 2023;34:S1286–87; 2. Brisson RJ, et al. Head Neck. 2019;41:3842–49; 3. Soulieres D, et al. J Clin Oncol. 2016;34:6008;

4. Li Q, et al. *Signal Transduct Target Ther*. 2023;16:31; 5. ClinicalTrials.gov. NCT04338399. Available at: <u>https://clinicaltrials.gov/study/NCT043383999</u> (accessed January 2024).

How do you think novel targeted treatment options may impact the treatment landscape for R/M SCCHN in the future?

Future of targeted treatments for R/M SCCHN

Numerous targeted therapies on the horizon

• Several signalling pathways are activated in SCCHN; targeting these abnormal pathways has led to numerous agents being studied in clinical trials for patients with R/M SCCHN¹

Personalized treatment and predictors of response

- Screening for actionable genomic variations and tailoring targeted therapy accordingly²
- Identifying patients with favourable outcomes via predictive biomarkers³

Managing adverse events

• The response to targeted therapies relies on its specific target in tumour tissue. However, off-target side effects may lead to treatment failure and severe adverse events³

Integrating novel targeted therapies into clinical practice

• Guidance on how to select the most appropriate treatment (e.g. monotherapy or combination strategy) for each patient and the optimal treatment sequence⁴

R/M, recurrent/metastatic; SCCHN, squamous cell carcinoma of the head and neck.
1. Wise-Draper TM, et al. Am Soc Clin Oncol Educ Book. 2022;42:1–14; 2. Kordbacheh F, Farah CS. Cancers (Basel). 2021;13:5471;
3. Li Q, et al. Signal Transduct Target Ther. 2023;8:31; 4. Szturz P, Vermorken JB. Critical Issues in Head and Neck Oncology. 2023;199–215.

