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Kirsten rat sarcoma virus (KRAS) gene mutations are amongst the most prevalent oncogenic mutations in gastrointestinal tumours. 
Attempts at targeting the KRAS protein have been unsuccessful for decades, mainly due to its challenging architecture that lacks 
small-molecule-binding sites. Recent breakthrough advances in crystallographic studies and related fields have led to the discovery 

of an allosteric binding pocket specific to the KRAS G12C protein, which inhibitors can selectively target through its cysteine residue. The 
development of KRAS G12C inhibitors, such as adagrasib and sotorasib, and their demonstrated clinical activity led to their regulatory 
approval, first for treating non-small-cell lung cancer, and more recently for pancreatic and colorectal cancers. Since then, several KRAS 
G12C inhibitors have emerged and are entering the clinic. However, a significant challenge currently faced by KRAS G12C inhibitors is 
the emergence of resistance. Understanding these mechanisms is essential to guide the development of future combination therapies, 
which include concurrent vertical inhibition of the receptor tyrosine kinase/rat sarcoma virus (RAS)/mitogen-activated protein kinase (MAPK) 
pathway, combinations with chemotherapy or immunotherapy and other innovations that target key players of RAS pathway activation, such 
as Src Homologous Protein 2 and Son of Sevenless 1, to prolong the survival of patients with limited treatment options.

Rat sarcoma virus (RAS) proteins are a family of prototypical oncogenes 

frequently mutated in human cancers. Mutations in the RAS gene 

account for 19% of all pathogenic alterations and are the subject of 

extensive research in molecular and clinical oncology.1 The RAS family 

consists of three major isoforms, namely the Harvey rat sarcoma virus 

(HRAS), the neuroblastoma RAS viral oncogene homologue (NRAS) 

and the Kirsten rat sarcoma virus (KRAS). Amongst these, KRAS is the 

most frequently mutated of the RAS isoforms, with a remarkably high 

mutational prevalence in gastrointestinal (GI) malignancies, including 

90% of pancreatic ductal adenocarcinomas (PDAC) and 50% of 

colorectal cancers (CRC).2 The high prevalence of KRAS aberrations 

in GI malignancies was crucial in promoting studies that identified 

KRAS’s central role as an oncogenic driver and a critical factor in 

resistance against cytotoxic chemotherapy.3 However, despite decades 

of research into its molecular configuration, efforts in targeting KRAS 

have been elusive for several reasons: the absence of deep pockets 

in the RAS protein, making it inaccessible to small-molecule inhibitors, 

the constant transition between two distinct conformational states 

with vastly different chemical behaviours and the high affinity for  

guanosine-5'-triphosphate (GTP), allowing the KRAS protein to function 

despite low GTP concentrations, have made the design of a targeted 

KRAS inhibitor particularly difficult.4

Nevertheless, advances in molecular biology and conformational 

biochemistry have profoundly changed our understanding of an 

anomalous mutant variant known as the Gly12Cys KRAS (KRAS G12C) 

mutant.5 The successful development of KRAS G12C inhibitors is 

attributed to the distinct presence of the switch II pocket that allows 

covalent inhibition of the cysteine residue, as well as the high GTPase 

activity of KRAS G12C that likely results in an attenuated duration of 

rapidly accelerated fibrosarcoma (RAF) kinase activation, which is 

not fully present in other KRAS-mutant types.6 Despite the ubiquity of 

KRAS mutations in solid tumours, the global prevalence of KRAS G12C 
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mutations is relatively low in PDAC and CRC, accounting for only 1.3 and 

3.1% of the total mutational burden, respectively (Table 1).9–11 Moreover, 

several studies in CRC and PDAC have found that KRAS mutations, 

particularly KRAS G12C, are associated with a poor response to cytotoxic 

chemotherapy.12 Indeed, patients with KRAS G12C-mutated CRC had 

a median overall survival (mOS) of 16.1 (95% confidence interval [CI], 

13.0–19.0) months compared with 18.3 (95% CI, 17.2–19.3) months 

for KRAS non-G12C-mutated tumours and 19.2 (18.5–19.8) months for 

the mCRC overall cohort .13,14 In PDAC, mOS was 16.7 months in KRAS 

G12C-mutated tumours versus 24.9 months in KRAS non-G12C-mutated 

tumours.15 This review aims to summarize the pleiotropic functions of 

the KRAS gene, highlight the unique features of the KRAS G12C protein 

concerning its biological role and targeted treatments, describe the main 

mechanisms of resistance of currently approved drugs and finally review 

the results from published clinical trials testing KRAS G12C inhibitors, as 

well as KRAS G12C downstream and upstream protein inhibitors, with a 

focus on the most promising ongoing trials.

Kirsten rat sarcoma virus structure and effects of 
activating Kirsten rat sarcoma virus mutations
RAS proteins are small, membrane-bound guanine nucleotide-binding 

proteins. The major RAS isoforms are encoded by three genes, HRAS, 

NRAS and KRAS, producing four proteins, HRAS, NRAS, KRAS4A and 

KRAS4B, from a KRAS splice variant. The amino-terminal residues 

1–165 of these proteins share 92–98% sequence similarity, and the 

remaining 23–24 carboxy-terminal residues diverge significantly. The 

structural domain of the RAS protein consists of the first 166–168 

residues, forming the G domain, a structure featuring a mix of  

six-stranded β-sheet and five-α-helix fold, typical of α,β-nucleotide-binding 

proteins. Four main regions border the nucleotide-binding pocket: the  

phosphate-binding loop (P-loop, residues 10–17), switch I (residues 

30–38), switch II (residues 60–76) and the base-binding loops (residues 

116–120 and 145–147).16 Similar to its RAS family counterparts, NRAS and 

HRAS, KRAS mediates downstream signalling via the activation of the RAF  

protein/mitogen-activated protein kinase kinase (MEK)/extracellular 

signal-regulated kinases (ERK) cascade, the phosphoinositide-3-kinase 

complex/mammalian target of rapamycin (PI3K/mTOR) axis and ultimately 

the RAS-related protein/nuclear factor-κB (NF-κB) pathway, driving tumour 

onset, progression and distant spread.17–19 KRAS constantly transitions 

between an inactive ‘off’ state when bound to guanosine diphosphate 

(GDP) and an active ‘on’ state when bound to GTP, a process facilitated 

by guanine nucleotide exchange factors (GEFs) such as Son of Sevenless 

(SOS) 1 and 2. In the GTP-bound state, threonine-35 (in the switch I region) 

and glycine-60 (in the switch II region) stabilize the active conformations 

of the switch I and switch II regions by anchoring to the γ-phosphate of 

GTP. Upon phosphate release during GTP hydrolysis, switch I and switch 

II recoil back into their inactive GDP conformations, such that these 

regions ultimately regulate all known nucleotide-dependent interactions 

between RAS and its binding partners.16 The exchange of GDP for GTP 

results in the activation and dimerization of RAS proteins, ultimately 

leading to the propagation of signal transduction cascades. This transition 

is mainly regulated by a variety of upstream receptor tyrosine kinases 

(RTKs) such as the epidermal growth factor receptor (EGFR), human 

epidermal growth factor receptor 2 (HER2), human epidermal growth 

factor receptor 3 and fibroblast growth factor receptors (FGFRs).20 Most 

KRAS-activating mutations trigger the conversion of KRAS-GDP into 

KRAS-GTP, further enhanced by inhibiting GTPase activity that locks KRAS 

in its ‘on’ state, leading to the constitutive activation of downstream 

signalling pathways (Figure 1).

Evolution of Kirsten rat sarcoma virus-targeting 
strategies
Targeting KRAS has been an important research challenge during the 

last 30 years when it was considered ‘undruggable’. This challenge 

stemmed in part from the structure of KRAS, a small protein with a 

relatively smooth surface that lacks well-defined hydrophobic pockets 

(except for its GTP/GDP-binding pocket) suitable for small-molecule 

inhibitor binding, as well as from KRAS’s ability to bind GTP with 

picomolar affinity in an environment with high intracellular GTP 

concentrations.16,21–24 In addition, each KRAS mutation alters the 

structure of the GTP-binding pocket differently, which further 

complicates the design of an inhibitor that is effective against multiple 

KRAS alterations.25–27 Strategies therefore focused on indirectly targeting 

KRAS by inhibiting downstream signalling effectors such as PI3K and 

MEK, modifying the epigenetic environment with telomerase inhibitors, 

and RNA interference or promoting synthetic lethality using  

cyclin-dependent kinase inhibitors, with limited tolerability and 

efficacy.28–31 In the last decade, molecular studies of KRAS-mutated 

proteins highlighted the unique structure of the aberrant variant KRAS 

G12C, resulting from a missense mutation, causing the substitution of 

glycine with cysteine at codon 12 in exon 2. The presence of cysteine 

causes a steric block that prevents the arginine finger of GTPase-

activating proteins from binding to the GTPase site of RAS, inhibiting the 

hydrolysis of GTP to GDP, thus maintaining KRAS in a constitutively active 

state.32 However, a distinguishing feature of the KRAS G12C protein, 

discovered by Shokat’s laboratory in 2013, is the presence of an 

allosteric pocket below the switch II region of the mutated cysteine 

residue, called the switch II pocket, which is susceptible to inhibition 

through covalent binding.20 Unlike other KRAS mutations, KRAS G12C 

does not significantly alter the intrinsic GTPase activity, allowing KRAS to 

remain in the GDP-bound or inactive state for a longer period.33 These 

biochemical and functional properties paved the way for the 

development of the first KRAS G12C-targeted therapies: sotorasib and 

adagrasib. Both drugs irreversibly bind the cysteine residue in the switch 

II pocket of KRAS G12C, locking it in its inactive GDP-bound state and 

inhibiting downstream signalling.16,34 While adagrasib has high selectivity 

for KRAS G12C, sotorasib inhibits NRAS G12C more potently compared 

with KRAS G12C or HRAS G12C. According to structural and reciprocal 

mutagenesis studies, differences in isoform-specific binding are 

mediated only by histidine-95 in KRAS and leucine-95 in NRAS.35 A single 

patient with NRAS G12C CRC was reported to have had a marked 

tumour response after being treated with sotorasib and panitumumab, 

Table 1: Prevalence and distribution of Kirsten rat sarcoma virus G12 mutations across gastrointestinal cancer types7,8

Colorectal (%) Pancreas (%) Gastric/Esophageal (%) Gallbladder/cholangiocarcinoma (%)

KRAS G12C 7.0 1.3 5.9/7.6 0.5/1.2

KRAS G12D 29.9 41.8 27.0/33.0 33.6

KRAS G12V 20.0 31.6 18.0/13.0 27.2

KRAS G12R 1.1 16.1 3.9/0.8 9.6

KRAS = Kirsten rat sarcoma virus.
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suggesting that sotorasib can be clinically effective in NRAS G12C-

mutated tumours.35 Regardless, the clinical application of  

single-agent sotorasib was studied in 2021 to treat advanced KRAS 

G12C-mutated non-small-cell lung cancer (NSCLC) in the CodeBreaK 

100 trial (A Phase 1/2, Open-label Study Evaluating the Safety, Tolerability, 

Pharmacokinetics, Pharmacodynamics, and Efficacy of Sotorasib [AMG 

510] Monotherapy in Subjects With Advanced Solid Tumors With KRAS 

p.G12C Mutation and Sotorasib [AMG 510] Combination Therapy in 

Subjects With Advanced NSCLC With KRAS p.G12C Mutation; ​

ClinicalTrials.​gov identifier: NCT03600883).36 This phase II trial enrolled 

126 patients (pts) with previously treated KRAS G12C-mutated NSCLC 

who received sotorasib. The overall response rate (ORR) was 37.1% (95% 

CI, 28.6–46.2), disease control rate (DCR) was 80.6% (95% CI, 72.6–87.2), 

median progression-free survival (mPFS) was 6.8 months (95% CI, 

5.1–8.2) and mOS was 12.5 months.36 The CodeBreaK 100 trial has been 

considered a landmark trial based on these results, and sotorasib was 

granted accelerated approval by the US Food and Drug Administration 

(FDA) in May 2021 for the treatment of locally advanced or metastatic 

KRAS G12C-mutated NSCLC pts who have failed one or more systemic 

therapies.37 Comparable findings were observed with adagrasib 

monotherapy in a similar population, prompting its approval by the US 

FDA in December 2022.38 Sotorasib and adagrasib have also shown 

encouraging but varied results in GI cancers. The initial findings from the 

CodeBreaK 100 trial included a cohort of 12 pts with KRAS G12C-mutated 

PDAC who received sotorasib monotherapy, amongst whom one 

achieved a partial response (PR).39 When the trial was expanded to 

include 38 pts with KRAS G12C-mutated PDAC, mPFS was 4.0 months 

and mOS was 6.9 months. In addition, 21% of pts achieved a PR, with a 

DCR of 84%.40 In the phase I–II KRYSTAL-1 trial (​ClinicalTrials.​gov identifier: 

NCT03785249), adagrasib monotherapy demonstrated comparable 

outcomes to sotorasib: for 21 pts with metastatic PDAC receiving 

adagrasib, mPFS was 5.4 months (95% CI, 3.9–8.2) and mOS was  

8.0 months (95% CI, 5.2–11.8). ORR was 33% and DCR was 49%.41 So far, 

both adagrasib and sotorasib have been adopted as single-agent 

therapeutic options by the National Comprehensive Cancer Network 

guidelines for advanced KRAS G12C-mutated PDAC and biliary tract 

cancers (BTC).41 While single-agent KRAS G12C inhibitors have shown 

promising results in PDAC, their efficacy appears less pronounced in 

CRC. On the other hand, improved results were observed testing 

sotorasib and adagrasib in combination with EGFR inhibitors. The 

analysis of CodeBreaK 101, a phase Ib study of pts with chemorefractory 

KRAS G12C-mutated CRC receiving sotorasib alone or in combination 

with EGFR inhibitors, showed an ORR of 30% with sotorasib–

panitumumab compared with 9.7% with sotorasib monotherapy.42,43 

Subsequently, the CodeBreaK 300 trial evaluated two doses of sotorasib 

(960 mg once daily and 240 mg once daily) in combination with 

panitumumab versus standard-of-care trifluridine/tipiracil in 

chemorefractory metastatic CRC (mCRC) and showed an mPFS of 5.6 

and 3.9 months in the 960 mg sotorasib–panitumumab group and 240 

mg in the sotorasib–panitumumab group compared with 2.2 months in 

the standard-care group. ORR was 26.4, 5.7 and 0% for the 960 mg 

sotorasib–panitumumab, 240 mg sotorasib–panitumumab and 

Figure 1: Schematic representation of Kirsten rat sarcoma virus G12C signalling pathways and regulatory mechanisms

Simplified illustration of the signalling pathways downstream of KRAS G12C in its active and inactive states. Black arrows indicate upregulation or activation. At the cell membrane, 
RTKs initiate the activation of KRAS. In the inactive state, KRAS G12C is bound to GDP and undergoes activation through interaction with GEFs, which facilitate the exchange of GDP 
for GTP. Once bound to GTP, KRAS G12C transitions to its active state and promotes the activation of multiple downstream signalling pathways (RAF/MEK/ERK, PI3K/AKT/mTOR 
pathway and RAL/NF-κB). The GAPs promote the hydrolysis of GTP to GDP, inactivating KRAS G12C and returning it to the inactive GDP-bound state. These signalling pathways 
ultimately converge at the nucleus, regulating cellular processes such as proliferation, survival and tumour progression.
AKT = protein kinase B; ERK = extracellular signal-regulated kinase; GAP = GTPase-activating protein; GDP = guanosine diphosphate; GEF = guanine nucleotide exchange factors;  
GTP = guanosine-5'-triphosphate; KRAS = Kirsten rat sarcoma virus; MEK = mitogen-activated protein kinase kinase; mTOR = mammalian target of rapamycin; NF-kB = nuclear  
factor-κB; PI3K = phosphoinositide3-kinase complex; RAF = rapidly accelerated fibrosarcoma; RAL = RAS-related protein; RTKs = receptor tyrosine kinase.
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standard-care groups, respectively.42 Of note, the phase I–II KRYSTAL-1 

trial assessed adagrasib ± cetuximab in the same setting, showing an 

ORR of 34% (95% CI, 24.6–44.5) versus 21.4% (95% CI, 10.3–36.8) in 

favour of the combination treatment with a similar DCR (85.1 versus 

86.2%) between the two arms. The combination confirmed its superiority 

in all the other efficacy outcomes, with an mPFS of 6.9 months (95% CI, 

5.7–7.4) versus 4.1 months (95% CI, 2.8–6.5). mOS was 15.0 months (95% 

CI, 11.8–18.8) versus 12.2 months (95% CI, 8.1–15.2). Interestingly, the 

combination was more tolerated with 27% of grade 3–4 treatment-

related adverse events (TRAEs) versus 34%, respectively.44 Fuelled by 

these positive results, the KRYSTAL-10 (​ClinicalTrials.​gov identifier: 

NCT04793958), a global, open-label, randomized phase III study, 

evaluates adagrasib and cetuximab against chemotherapy in the same 

patient cohort.45 On the other hand, the use of KRAS G12C inhibitors 

remains limited in other GI cancers. The prevalence of KRAS G12C varies 

across GI malignancies: it is limited in BTC, accounting for only 1% of 

mutations, and is slightly more prevalent in appendiceal cancers 

(3–4%).10 A cohort of KRYSTAL-1 focusing on non-CRC GI cancers 

evaluated 57 pts, amongst whom 12 had BTC and 16 had other GI 

tumours (nine pts had appendiceal cancer, four had gastro-oesophageal 

junction/oesophageal cancer and three had small bowel cancer). 

Updated results published in May 2023 demonstrated an ORR of 35.1%, 

a DCR of 86.0% and a median duration of response of 5.3 months (95% 

CI, 2.8–7.3). mPFS was 7.4 months (95% CI, 5.3–8.6) and mOS was 14.0 

months (95% CI, 8.5–18.6). Interestingly, in pts with BTC, ORR was 41.7%, 

DCR was 91.7%, mPFS was 8.6 months (95% CI, 2.7–11.3) and mOS was 

15.1 months (95% CI, 8.6–not estimable).41

Emergence of resistance
Despite the initial clinical responses achieved with KRAS G12C inhibitors, 

treatment failure eventually occurs due to the emergence of resistance. 

Resistance mechanisms can be divided into genetic when a mutation is 

identified in genes involved in RAS-dependent molecular pathways and 

adaptive when reactivation of upstream proteins occurs. According to 

paired plasma sample analyses, genetically acquired mutations have 

been detected in 90% of mCRC pts treated with the new KRAS G12C 

inhibitor divarasib with or without cetuximab.46 The most common 

on- and off-target alterations detected include new activating KRAS 

mutations, upstream RTKs hyperactive alterations (EGFR and FGFRs) 

and aberrations associated with downstream proteins (PIK3CA, RAF and 

MEK). Similarly, pts treated with adagrasib with or without cetuximab, for 

whom genomic-acquired mechanisms of resistance were detectable 

in more than 70% of pts, the newly acquired mutations affected both 

downstream signalling proteins, such as mitogen-activated protein 

kinase (MAPK) and PI3K, and upstream RTKs.47 Adaptive resistance 

most commonly manifests through the reactivation of upstream RTKs in 

response to KRAS G12C inhibition, limiting the efficacy of targeted drug 

therapies.48 Mutant KRAS G12C suppresses the activation of upstream 

RTKs and other wild-type RAS isoforms through ERK-mediated feedback 

inhibition. Therefore, using an agent stabilizing KRAS G12C protein in its 

‘off’ state relieves this suppression with a consequent upregulation of 

RTKs, ultimately leading to the activation of wild-type RAS isoforms. This 

circuit was demonstrated in two studies by Ryan et al., where treatment 

with KRAS G12C inhibitors resulted in a rapid rebound increase in MAPK 

signalling as a result of the increased expression of multiple upstream 

RTKs, including EGFR, HER2 and FGFR.49,50 Uncovering these resistance 

mechanisms has fuelled the development of novel targeted therapeutic 

agents, which are under clinical investigation as both single-agent and 

combined strategies with other agents. Several promising therapies are 

currently undergoing preclinical or early-phase trials within multicohort 

studies, with the most relevant highlighted in Table 2.p28,36,51–65

New direct inhibitors of Kirsten rat sarcoma virus 
G12C
Since the FDA approved adagrasib and sotorasib, several KRAS G12C 

inhibitors with different safety profiles are entering clinical trials. 

Divarasib is a KRAS G12C inhibitor that binds to the KRAS G12C protein 

in its ‘off’ state. It is, however, up to 50 times more selective and 5–20 

times more potent than sotorasib and adagrasib according to in vitro 

studies.33 Divarasib monotherapy was evaluated in a phase I trial enrolling  

137 pts, 55 of whom had mCRC.32 No dose-limiting toxicity occurred 

across concentrations ranging from 50 to 400 mg, and grade ≥3 TRAEs 

were observed in 12% of pts, leading to treatment discontinuation in 3% 

of cases. Amongst patients in the CRC cohort treated with divarasib 400 

mg daily, 35.9% had a confirmed response (complete response [CR] or PR) 

and an mPFS of 6.9 months. More recently, the combination of divarasib 

with cetuximab achieved an improved ORR of 62.5% (95% CI, 40.6–81.2%) 

and an mPFS of 8.1 months (95% CI, 5.5–12.3) in pts with mCRC enrolled 

in a phase Ib trial (A Phase Ia/Ib Dose-escalation and Dose-expansion 

Study Evaluating the Safety, Pharmacokinetics, and Activity of GDC-6036 

as a Single Agent and in Combination with Other Anti-cancer Therapies 

in Patients with Advanced or Metastatic Solid Tumors with a KRAS G12C 

Mutation; ​ClinicalTrials.​gov identifier: NCT04449874).67 In a limited PDAC 

cohort containing seven pts receiving divarasib, three achieved PR, while 

four had stable disease (SD). Similarly, amongst seven pts with BTC, one 

patient had a PR, four had SD and one had progressive disease (PD).46 

Therefore, further assessment of divarasib in PDAC and BTC is warranted 

in more extensive randomized trials. Divarasib is under evaluation in 

two phase I basket trials (​ClinicalTrials.​gov identifiers: NCT04449874 and 

NCT04929223), exploring its efficacy in combination with cetuximab 

with or without cytotoxic chemotherapy.68,69 Garsorasib is another orally 

bioavailable small-molecule inhibitor of KRAS G12C shown to be highly 

potent in vivo using cell line-derived and patient-derived xenograft 

tumour models, as well as in PDAC and CRC in vitro cell lines. In CRC 

patient-derived xenografts models, single-agent demonstrated tumour 

growth inhibition ranging from 60.9 to 105.7%, with three out of nine 

models showing tumour regression.70 Combining garsorasib with other 

anti-cancer agents, such as MEK inhibitors, tyrosine phosphatase-2 (Src 

Homologous Protein 2 [SHP2]) inhibitors and chemotherapy, increased its 

anti-tumoural activity and enhanced tumour regression.71 The efficacy of 

garsorasib was evaluated in combination with cetuximab in an ongoing 

phase II trial (​ClinicalTrials.​gov identifier: NCT04585035) in pts with 

refractory mCRC. Preliminary results demonstrated an ORR of 45% and 

a DCR of 95%. However, data on overall survival are still pending.70–72 

Similarly, amongst 10 pts with advanced PDAC who received garsorasib, 

ORR was 50%, including one CR, DCR was 80% and mPFS was 8.54 

months.73 It is essential to mention that in this trial, only 40% of pts 

received two or more lines of therapy.

Son of Sevenless 1 and Src Homologous Protein 2 
inhibitors
Son of Sevenless 1 (SOS1) and SHP2 are signalling intermediates activated 

by RTKs that act as central nodes in the RAS signalling pathway. SOS1 is 

a GEF protein that binds inactive KRAS–GDP complex and mediates GTP 

exchange. SHP2, an adaptive phosphatase, links directly to SOS1, further 

facilitating GTP exchange. Therefore, inhibiting both SOS1 and SHP2 blocks 

RTK-positive molecular signalling to KRAS, maintaining it in its inactive 

GDP state. Published data demonstrated that co-inhibition of SHP2 and 

KRAS G12C overturns feedback reactivation across different RTKs and 

that combined KRAS G12C–SHP2 inhibition maintains RAS pathway 

suppression with improved efficacy both in vitro and in vivo.49,50 Since 

new activating RTK alterations were also commonly detected in liquid 
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biopsies at the time of radiological treatment progression, approaches 

that target KRAS activation via SOS1 or SHP2 inhibitors represent a 

compelling avenue for intervention. The combination of glecirasib with 

JAB-3312, an SHP2 inhibitor, in pts with NSCLC with no prior exposure to 

KRAS G12C inhibitors demonstrated an ORR of 50% and a DCR of 100%, 

albeit with increased toxicity.74 RMC-4630 is another SHP2 inhibitor being 

examined with sotorasib in the CodeBreaK 101 trial.75 In a cohort of six 

pts, five (83%) achieved disease control; however, no responses were 

observed.

Downstream mitogen-activated protein kinase 
blockade
As mentioned previously, adaptive and acquired resistance mechanisms 

may involve upregulation of the RTK/RAS/MAPK downstream signalling 

pathway, hence the rationale behind using RAS downstream inhibitors. 

A well-described example is the upregulation of EGFR that occurs with 

B-Raf murine sarcoma viral oncogene homologue B (BRAF) inhibition 

in BRAF-mutated CRC, necessitating the addition of EGFR inhibitors 

to counteract drug resistance. Another example is the compensatory 

activation of the mTOR pathway, which has been documented in KRAS 

G12C inhibitor-resistant CRC cell lines.76 Currently, mTOR inhibitors such 

as everolimus are being explored in combination with sotorasib in NSCLC, 

while relevant phase I basket trials are investigating combinations such as 

adagrasib with nab-sirolimus (​ClinicalTrials.​gov identifier: NCT05840510) 

and divarasib with the PI3K inhibitor inavolisib (​ClinicalTrials.​gov 

identifier: NCT04449874) in pts with various solid tumours, including 

CRC.68,77 Moreover, the addition of MEK inhibitors to G12C inhibitors is 

being tested in the CodeBreaK 101 study as a new alternative, based on 

preclinical studies showing that sotorasib and trametinib (MEK inhibitor) 

combination has a synergistic anti-tumour effect on NSCLC tumour 

cell lines in vitro compared with either of the single agents alone.78 In 

this context, sotorasib and trametinib (MEK inhibitor) were evaluated in  

36 pts, 18 of whom have KRAS G12C-mutant CRC, achieving a remarkable 

DCR of 86%.79 It is worth noting that some pts had prior exposure to KRAS 

G12C inhibitors, and upon receiving the maximum tolerated dose of  

2 mg trametinib and 960 mg sotorasib, all pts had radiological SD. These 

results, albeit reported in a limited number of pts, indicate a clinically 

significant therapeutic benefit associated with the addition of trametinib 

to sotorasib. Of note, this trial reported 34% of pts with grade ≥3 toxicity, 

leading to therapy discontinuation in 24% of cases.

Combination with immunotherapy
The tumour microenvironment (TME) in PDAC is a complex and dynamic 

cell network involving immune, stromal and cancer cells, facilitating 

tumour progression and response to therapy. KRAS mutations have 

been widely shown to foster anti-inflammatory and pro-inflammatory 

effects on the TME. Some studies underpinned that KRAS mutations 

promote an immunosuppressive TME through several mechanisms 

Table 2: Comprehensive list of new Kirsten rat sarcoma virus G12C ‘off’ inhibitors and their treatment-related adverse 
events28,36,51–65

Agent Pharmaceutical company
Clinical trial and 

identifier
Incidence of grade 

≥3 TRAEs Most commonly reported grade ≥3 TRAEs

LY353798251 Eli Lilly and Company Phase I (NCT04956640) NA Diarrhoea, constipation, fatigue, peripheral oedema, 
nausea and neutropenia

GDC-603628 Genentech Phase I (NCT04449874) 12% Increased ALT, increased AST, nausea, vomiting and 
fatigue

D-155352 InventisBio Phase I/II 
(NCT04585035)

22% Increased AST and ALT, diarrhoea, hypertension, 
hypokalaemia and nausea

HBI-243853 Huyabio International Phase I (NCT05485974) Pending Pending

JDQ44354 Novartis Phase Ib/II 
(NCT04699188)

7.1% Neutropenia, increased ALT and AST and myalgia

JAB-2182255 Jacobio Pharma Phase I/II 
(NCT05009329)

0% NA

HS-1037036 Jiangsu Hansoh 
Pharmaceutical Company

Phase I/II 
(NCT05367778)

27.3% Increased AST and ALT, anaemia, diarrhoea, weight 
gain, decreased appetite, hypoproteinaemia, nausea, 
fatigue and rash

IBI-351 (GFH925)56 Innovent Biologics Inc. Phase I/II 
(NCT05005234)

20% Anaemia, leukopaenia, increased ALT and pruritus

BI-182391157 Boehringer Ingelheim Phase I (NCT04973163) 30% Nausea, diarrhoea, vomiting, fatigue and decreased 
appetite

JNJ-7469915758 Johnson & Johnson Phase I (NCT04006301) 55% Increased blood CPK

GFH92556 GenFleet Pooled analysis of 
two phase I studies 
(NCT05005234 and 
NCT05497336)

20% Anaemia, decreased white blood cell count, 
increased ALT and pruritus

YL-1529359 Shanghai Yingli Phase I (NCT05173805) NA NA

BPI042128660 Belta Phase I (NCT05315180) Pending Pending

GH3561 Suzhou Genhouse Bio Phase I (NCT05010694) Pending Pending

GEC25562 GenEros Biopharma Phase I 6.7% Diarrhoea, increased ALT, rash and anaemia

MK-108463 Merck Phase I (NCT05067283) Pending Pending

D3S-00164 D3 Bio Phase I 14.6% NA

HBI-243866 Huyabio Phase I (NCT05485974) Pending Pending

SY-593365 Shouyao Holdings Phase I (NCT06006793) Pending Pending

ALT = alanine aminotransferase; AST = aspartate aminotransferase; CPK = blood creatinine phosphokinase; NA = not available; TRAEs = treatment-related adverse events.
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Table 3: Summary of clinical trials testing Kirsten rat sarcoma virus G12C inhibitors as monotherapy or in combination with 
other agents in gastrointestinal cancers40–42,44–46,51,56–58,67,69,72,74,75,79,88–107

Target Drugs Trial name and identifier Phase GI malignancy
Number of pts in the 

trial, if applicable Clinical efficacy

KRAS G12C ‘off’ 
inhibitors

Adagrasib41 KRYSTAL-1 (NCT03785249) I/II PDAC 21 ORR: 33%
DCR: 49%

mPFS: 5.4 months
mOS: 8.0 months

CRC 43 ORR: 19%
DCR: 86%

mPFS: 5.6 months
mOS: 19.8 months

BTC 12 ORR: 42%
DCR: 92%

Appendiceal adenocarcinoma 7 ORR: 0%
DCR: 86%

GEA 3 ORR: 33%
DCR: 66%

Adagrasib+cetuximab44,45 NCT05634525 I PDAC Pending Pending

KRYSTAL-1 (NCT03785249) I/II CRC 28 ORR: 46%
DCR: 100%

mPFS: 6.9 months
mOS: 13.4 months

Adagrasib+cetuximab+irinotecan88 NCT05722327 I CRC Pending Pending

Adagrasib+cetuximab versus chemotherapy89 KRYSTAL-10 (NCT04793958) III CRC, second line Pending Pending

Adagrasib+TNO15590 KRYSTAL-2 (NCT04330664) I/II CRC Pending Pending

Adagrasib+BI 170196391 KRYSTAL-14 (NCT04975256) I CRC Pending Pending

Adagrasib+MRTX090292 NCT05578092 I/II NA Pending Pending

Adagrasib+durvalumab93 NCT05848843 I CRC Pending Pending

Adagrasib+INCB09928094 NCT06039384 I CRC Pending Pending

Sotorasib40,42 CodeBreaK 100 (NCT03600883) I/II PDAC 38 ORR: 21%
DCR: 84%

mPFS: 4.0 months
mOS: 6.9 months

CRC 62 ORR = 9.7%
DCR = 82%

Sotorasib+panitumumab95 CodeBreaK 101 (NCT04185883) I/II CRC 40 ORR: 30%
DCR: 93%

mPFS: 5.7 months

Sotorasib+panitumumab+FOLFIRI96 CodeBreaK 101 (NCT04185883) I/II CRC 31 ORR: 58.1%

Sotorasib+trametinib79 CodeBreaK 101 (NCT04185883) I/II CRC 18 ORR: 11.1%
DCR: 83.3%

Sotorasib+panitumumab versus standard of care97 CodeBreaK 300 (NCT05198934) III CRC  �  ORR: 26.4 versus 0% (SOC)
DCR: 71.7 versus 46.3% 

(SOC)
mPFS: 5.6 versus 2.2 

months (SOC)

Sotorasib+BI 170196398 CodeBreaK 101 (NCT04185883) I/II NA Pending Pending

Sotorasib+RMC-463075 CodeBreaK 101 (NCT04185883) I/II CRC  �  6 ORR: 0%
DCR: 83.3%

Sotorasib+BBP-39899 NCT05480865 I/II NA Pending Pending

BI1823911 monotherapy+BI 170196357 NCT04973163 I NA Pending Pending

Divarasib46 NCT04449874 I CRC 55 ORR: 29%
DCR: 85%

mPFS: 5.6 months

PDAC 7 ORR: 43%
DCR: 100%

BTC 5 ORR: 0%
DCR: 80%

Divarasib+cetuximab67 NCT04449874 I CRC 29 ORR: 62.5%

Divarasib+cetuximab+FOLFOX or FOLFIRI69 INTRINSIC (NCT04929223) I CRC Pending Pending

Fulzerasib56 Pooled analysis of NCT05005234 
and NCT05497336

I CRC 45 ORR 43.8%
DCR 87.5%

Garsorasib72 NCT04585035 I/II CRC 24 ORR: 21%
DCR 95.8%

mPFS: 7.6 months

Garsorasib72 NCT04585035 I/II PDAC 10 ORR: 50%
DCR: 80%

mPFS: 8.5 months

Garsorasib+cetuximab72 NCT04585035 I/II CRC 40 ORR: 45%
DCR: 95%

mPFS 7.6 months

Continued
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such as tumour cell expression of inhibitory cytokines interleukin (IL)-10 

and transforming growth factor-β, recruitment of myeloid-derived 

suppressor cells, regulatory T-cell (T-reg cell) activation and suppression 

of cluster of differentiation 8 (CD8) T-cell activity.21,80 Other studies 

suggest that KRAS mutations could also interfere with the secretion of 

pro-inflammatory cytokines, such as intercellular adhesion molecule-1, 

tumour necrosis factor-α, IL-1β, IL-6 and IL-18, through the induction of 

NF-κB.81–83 On the other hand, adagrasib and sotorasib were found to 

induce a pro-inflammatory microenvironment and modulate the TME 

by recruiting macrophages, dendritic cells and CD8 T-cells, promoting  

anti-tumour immune response in NSCLC. These findings suggest a 

potential synergistic interaction between these agents and immune 

checkpoint inhibitors (ICIs).84,85 However, conflicting data have emerged 

regarding the efficacy and tolerability of these combined regimens. 

Early data from the CodeBreaK 101 study, in which pts with NSCLC 

received sotorasib plus pembrolizumab or atezolizumab, showed a 

high incidence of liver toxicity, with an ORR of 29% and a DCR of 83%.86 

However, results from the KRYSTAL-7 (​ClinicalTrials.​gov identifier: 

NCT04613596) study combining adagrasib and pembrolizumab in pts 

with NSCLC who had programmed death-ligand 1 expression >50% 

demonstrated an ORR of 63% and a DCR of 84%, with limited high-grade 

toxicity (10%).87 The combination of KRAS G12C inhibitors with ICIs and 

other target therapies is currently being assessed in several clinical 

trials across other KRAS G12C-mutant solid tumours, PDAC and CRC 

(Table 3).40–42,44–46,51,56–58,67,69,72,74,75,79,88–107

Conclusion
Since the first demonstration of sotorasib efficacy with the published 

results from the CodeBreaK 100 trial in 2019, the current landscape 

of RAS targeting strategy has shifted from undruggable to druggable. 

Fuelled by the successful implementation of adagrasib and sotorasib 

as standard treatment options in PDAC, and recently in BTC and CRC, 

more than a dozen small-molecule inhibitors targeting KRAS G12C 

and related upstream and downstream molecules have emerged. 

They are actively investigating, with many of them already advanced 

to clinical trials for evaluation in GI cancers. However, despite the 

crucial development and relative success of KRAS G12C inhibitors in 

treating GI cancers, clinical research must still prioritize strategies to 

overcome primary and acquired resistance, primarily through vertical 

inhibition with RTK/RAS/MAPK pathway inhibitors and combination 

with immunotherapy or standard chemotherapy. In addition, more data 

about toxicity management and quality of life are awaited to ensure 

the safety of new drugs and combinations under evaluation. Other 

important considerations will be integrating KRAS G12C inhibitors in 

earlier phases of treatment, such as in the neoadjuvant and adjuvant 

settings. These strategies may expand the population of pts with GI 

cancers, benefitting from the inhibition of KRAS G12C. Undoubtedly, 

we are in a new and promising era of cancer treatment, pushing the 

boundaries of KRAS target therapy. q

Target Drugs Trial name and identifier Phase GI malignancy
Number of pts in the 

trial, if applicable Clinical efficacy

Glecirasib101 NCT05009329 and NCT05002270 I/II PDAC, biliary tract, gastric, 
small bowel, appendiceal, 
hepatocellular, peritoneal

PDAC = 28
Others = 19

ORR: 46.4%
DCR: 96.4%

mPFS: 5.5 months

Glecirasib+cetuximab102 NCT05002270 and NCT05194995 I/II CRC, small bowel and 
appendiceal adenocarcinoma

43 ORR: 62.8%
DCR: 93%

mPFS: Not reached

Glecirasib103 NCT06008288 II PDAC Pending Pending

Glecirasib+JAB-331274 NCT05288205 I/II CRC and PDAC Pending Pending

JDQ443 monotherapy+TNO155 or +tislelizumab104 KontRASt-01 (NCT04699188) I/II CRC Pending Pending

JDQ443+trametinib+ribociclib or + cetuximab105 KontRASt-03 (NCT05358249) I/II CRC Pending Pending

JNJ-7469915758 NCT04006301 I CRC  �  Withdrawn from market

LY353798251 LOXO-RAS-20001 (NCT04956640) I/II PDAC 12 ORR: 42%
DCR: 92%

CRC 20 ORR: 10%
DCR: 90%

Others 21 ORR: 52%
DCR: 95%

LY3537982+cetuximab51 LOXO-RAS-20001 (NCT04956640) I/II CRC 11 ORR: 45%
DCR: 100%

KRAS G12C ‘on’ 
inhibitors

BBO-8520106 Preclinical  �

RMC-6291107 NCT05462717 I CRC 20 ORR = 40%
DCR = 80%

BTC = biliary tract cancer;  CRC = colorectal cancer;  DCR = disease control rate;  FOLFIRI = leucovorin calcium (folinic acid)–fluorouracil–irinotecan hydrochloride;  FOLFOX = leucovorin calcium (folinic acid)–fluorouracil–oxaliplatin;  GEA = gastro-oesophageal cancer;  GI = 
gastrointestinal; KRAS = Kirsten rat sarcoma virus; mOS = median overall survival;  mPFS = median progression-free survival;  NA = not available;  ORR = overall response rate;  PDAC = pancreatic ductal adenocarcinoma; pts = patients;  SOC = standard of care.
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