touchONCOLOGY touchONCOLOGY
Haematological Malignancies, Multiple Myeloma
Read Time: 8 mins

Teclistamab Monotherapy for the Treatment of Adult Patients with Relapsed and Refractory Multiple Myeloma

Copy Link
Published Online: Apr 27th 2023 touchREVIEWS in Oncology & Haematology. 2023;19(1):46–51 DOI: https://doi.org/10.17925/OHR.2023.19.1.46
Authors: Beatrice M Razzo, Alfred L Garfall
Quick Links:
Abstract
Article
Article Information
Abstract:
Overview

Several new drugs and regimens have greatly improved outcomes in multiple myeloma, but the rapid emergence of new targets and immune-based modalities has added significant complexity to the management of relapsed and refractory multiple myeloma (RRMM). Teclistamab is a T cell-redirecting anti-CD3 × anti-B cell maturation antigen bispecific antibody recently approved as monotherapy against RRMMThe drug is now the fourth B cell maturation antigen-targeting agent commercially used in RRMM and the third different drug class and mechanism of action doing so. Although approved as a single agent in relapsed and refractory disease, preclinical and clinical evidence has supported teclistamab-based regimens for use in earlier lines or in combination strategies. The identification of novel suitable cell-surface targets in multiple myeloma and the promising efficacy seen in earlyphase studies represent additional innovations to the treatment paradigms for RRMM.

Keywords

Anti-CD3 x anti-BCMA bispecific antibody, bispecific antibody, multiple myeloma, relapsed and refractory multiple myeloma, teclistamab, T cell engaging therapies

Article:

Multiple myeloma (MM) is the second most common haematological malignancy, with upwards of 35,000 diagnoses in the USA each year.1,2 It remains a leading cause of blood cancerrelated mortality worldwide, and although therapeutic advances have allowed for significant improvements in the median overall survival,3,4 the majority of patients still experience cycles of relapse that are eventually fatal.5 While patients with MM are living longer, a subgroup with high-risk disease at diagnosis still does poorly, with a median overall survival of nearly 3 years.6 Outcomes are also dismal in patients with disease that is refractory to the major modern therapies including thalidomide analogues, proteosome inhibitors and anti-CD38 monoclonal antibodies.7 Together, these unmet needs have driven the development of immunotherapy for relapsed and refractory multiple myeloma (RRMM).

Toward this end, immune cell redirecting therapies were developed following the discovery of suitable MM cell-surface markers and novel drug engineering technologies. Chimeric antigen receptor (CAR)-T cells showed robust responses in RRMM compared with B cell maturation antigen (BCMA), leading to the approval of cellular therapies for MM – idecabtagene vicleucel in 2021 and ciltacabtagene autoleucel in 2022.8–11 Available data on idecabtagene vicleucel and ciltacabtagene autoleucel in RRMM, however, suggest that most patients will experience disease progression after initial response.9,11 Moreover, the need for patient-specific manufacturing and access to specialized cellular therapy centres continue to limit CAR T cell access for patients with rapid disease progression or in under-served areas.

Successful adaptive immune redirection has also been shown with bispecific antibodies (BsAbs) against various established and emerging MM cell targets. This review follows the US Food and Drug Administration (FDA) approval of teclistamab – the first-in-kind commercially available BsAb for RRMM.12 Teclistamab is a T cell-redirecting antibody that targets CD3 on the surface of T cells and BCMA expressed on the surface of myeloma cells (BCMA×CD3). It was approved for use as monotherapy i2022 based on data from the MajesTEC-1 trial published in June 2022.13 Teclistamab and similar agents in development enable T cell redirection with similar potency to CAR T cells but without the delay required for patient-specific manufacturing.

In this article, we review the mechanism of action of this BCMA×CD3 antibody, the clinical data supporting the approval of teclistamab and its impact on the treatment paradigms for RRMM.

Mechanisms of action

Overview of B cell maturation antigen as a target

BCMA, also known as TNFRSF-17 or CD269, is a small transmembrane protein member of the tumour necrosis factor (TNF) receptor superfamily. It is selectively induced during plasma cell (PC) differentiation,14 with transcription and cell-surface expression concentrated in subsets of mature B cells, PCs and plasmacytoid dendritic cells.15,16 Select datasets have also suggested low-level transcription on neurons and astrocytes,17 though other studies have not supported this association.18,19

BCMA has two ligands, BAFF/BLys and APRIL, which are integral to maintaining bone marrow PC survival and homeostasis (as reviewed in Eckhert et al. and Romano et al.).20,21 Stimulation with APRIL or BAFF activates the NF-κB, AKT and mitogen-activated protein kinase (MAPK)8/c-Jun N-terminal kinase (JNK) signalling cascades, resulting in the upregulation of anti-apoptotic proteins,22 adhesion molecules, cell-cycle regulators, angiogenesis factors, immunosuppressive molecules and inflammatory cytokines (Figure 1A).23–26 Both ligands also bind to transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI), a larger homologue receptor of the TNF receptor superfamily, and mediate PC differentiation and T cell-independent immunoglobulin (Ig) isotype switching.27 The role of BCMA activation, however, is restricted to maintaining PCs and antigen presentation by B cells.26 BCMA has a soluble form derived from the cleavage of the membrane BCMA mediated by γ-secretase.28 This soluble form has shown to sequester BAFF and mediate immunosuppression by preventing normal B cell and PC development.29

 

BCMA is overexpressed in MM,30 and NF-κB overactivation is a hallmark of MM tumourigenesis.31 In patients with MM, soluble BCMA is also significantly elevated compared with healthy individuals, and higher soluble BCM(sBCMA) levels correlate with immune paresis, disease burden and adverse outcomes.28,32 Preclinical studies demonstrated that antibodies with ligandblocking activity could promote cytotoxicity in MM cell lines as naked antibodies or as antibodydrug conjugates by inhibiting APRIL-dependent activation of NF-κB in a dose-dependent manner in vitro.33 BCMA was later validated as a suitable CAR T target.15 Altogether, these studies paved the way for the development and clinical investigation of anti-BCMA antibodydrug conjugates, CAR T and now BsAb therapies against RRMM (Figure 1B).

Bispecific antibody therapy development for relapsed and refractory multiple myeloma

BsAbs are T cellengaging (TCE) therapies designed to redirect T cell cytotoxicity towards cell-surface tumour antigens (Figure 1B). TCE therapies have been developed in various formats, including bispecific IgG-like antibodies or shorter molecules comprising two linked antigen-binding domains configured as single-chain variable fragments, such as bispecific T cell engagers (BiTEs).34 BsAbs were originally proposed in the early 1960s but only developed35 and studied clinically36 years later. The favourable clinical efficacy of the blinatumomab (CD19×CD3 BiTE in relapsed B-cell acute lymphoblastic leukaemia) published in 201737 generated interest in BsAb development for other haematologic malignancies.34

An anti-BCMA BiTE construct, the BCMA×CD3 AMG420, yielded encouraging preclinical38 and clinical activity against RRMM.39 The need for a 4week continuous infusion due to the short half-life of BiTEs shifted the focus onto longer half-life, full-length IgG molecules.40 Several BCMA-targeting BsAbs have since been developed and tested in various clinical settings and combinations, and are reviewed by Moreau and Touzeau.41 Of these, teclistamab has been studied in the MajesTEC trial series and will be further described in the following section.

BsAbs against other emerging targets in RRMM are also being investigated. Talquetamab, a G protein-coupled receptor class C, group 5, member D (GPRC5D)×CD3 BsAb, showed promising tolerability and efficacy in a phase 1 trial (MonumenTAL-1)42,43 and is also being studied in combination with daratumumab (TRIMM-2,44 MonumenTAL-345) and several other agents (MonumenTAL-2).46 Cevostamab, an Fc receptor-homologue 5 (FCHR5)×CD3 BsAb, has also demonstrated safety and promising efficacy in an ongoing phase 1 study (ClinicalTrials.gov identifier: NCT03275103).47 This emergence of non-BCMA TCE targets is likely to introduce additional options and complexity in the care of heavily refractory patients.

Teclistamab in relapsed and refractory multiple myeloma

Clinical investigation

Teclistamab (also known as JNJ-64007957, Ab-957 and JNJ-7957) is a humanized IgG4-proline, alanine, alanine (IgG4-PAA) bispecific DuoBody® antibody (GenmabCopenhagen, Denmark), whose in vitro efficacy was first shown in 2016.48,49 The first inhuman trial with teclistamab, MajesTEC-1, was an open-label, single-arm phase 1/2 (phase 1 ClinicalTrials.gov identifier: NCT03145181; phase ClinicalTrials.gov identifier: NCT03145181trial that evaluated intravenous (phase 1) and subcutaneous (phase 1 and 2) administration.1,13,50,51 Participants were refractory to thalidomide analogues and proteosome inhibitors; most patients (93%) had also progressed on an anti-CD38 agent.51 Doses ranging from 0.3 µg/kg to 3000 µg/kg were evaluated.51 At most levels, a step-up dosing approach was used, in which 13 smaller quantities were administered over several days prior to the first full dose, with the intent of more gradually activating T cells and reducing the risk of severe cytokine release syndrome (CRS). Clinical responses were observed beginning at 38.4 µg/kg. No maximum tolerated dose was identified, and a recommended phase 2 dose of 1.5 mg/kg weekly, administered as a subcutaneous injection, was determined based on the combined safety, efficacy, pharmacokinetic and pharmacodynamic profiles of teclistamab. In total, 165 patients enrolled in phase 1 and 2 of the MajesTEC-1 trial received teclistamab at the recommended phase 2 dose. Patients received two step-up doses of 0.06 mg/kg and 0.3 mg/kg, which were separated by 24 days and were completed 24 days before the first full teclistamab dose was administered. Patients with confirmed partial response or better were permitted to switch to 2-weekly dosing.13,52

With a median follow-up of 14.1 months, the overall response rate was 63.0%, with 65 patients (39.4%) having a complete response or better. A total of 44 patients (26.7%) had no minimal residual disease; the negativity rate of minimal residual disease among the patients with a complete response or better was 46.0%. Responses occurred rapidly, with a median of 1.2 months until first response.

The Kaplan–Meier estimate of maintenance of response for at least 12 months was 68.5% (95% confidence interval [CI] 57.777.1). The median duration of response was 18.4 months (95% CI 14.9not estimable). The median progression-free survival was 11.3 months (95% CI 8.817.1).

Safety and infection risk13

As with CAR T cells, CRS and immune effector cell-associated neurotoxicity syndrome (ICANS) are important adverse effects of teclistamab and occurred in 72.1% and 3.0% of patients, respectively. These risks are confined to the initial doses and typically occur or days following the inciting dose. Inpatient monitoring at the time of the two step-up dose and first full dose of teclistamab is recommended in the FDA prescribing information to enable the prompt management of CRS.53 Roughly half of the patients who experienced CRS, or 36% of phase 2 participants, received tocilizumab; 8.5% of subjects received corticosteroids for CRS or ICANS management, thus warranting the availability of anti-interleukin-6 agent upon therapy initiationPatients who respond to teclistamab are not at an ongoing risk of CRS or ICANS with long-term dosing. If therapy is interrupted for longer than a month, however, repeat stepup dosing is advised.54

Infections were major adverse events in the MajesTEC-1 trial and occurred throughout the therapy.50 A total of 126 patients (76.4%) reported at least one infectious event, with 74 (44.8%) experiencing grade 3 or 4 infections. Notably, coronavirus disease 2019 (COVID-19) was frequent and led to on-study mortality in 12 of the 165 participants, though many of the fatal cases occurred in the early phase of the pandemic. Other viral (cytomegalovirusJC virus), bacterial and fungal events were also reported. Six (3.6%) patients developed Pneumocystis jirovecii pneumonia. Among the 19 on-study deaths due to adverse events, 14 were attributed to infection (12 due to COVID-19, one due to progressive multifocal leukoencephalopathy from JC virus infection, and one due to streptococcal pneumonia). Hypogammaglobulinaemia developed in 74.5% of patients (essentially all patients who responded to therapy and received long-term teclistamab), which likely contributed to the risk of infection. The FDA prescribing information recommends varicella zoster virus prophylaxis.53 Additional prophylaxis against Pneumocystis jirovecii pneumonia, and Ig replacement therapy to maintain IgG levels >400 mg/dL, should be considered.54 In our view, these measures are essential considering the magnitude of infection riskInterventions to protect against COVID-19 are also prudent, including vaccination and proactive use of anti-virals when symptomatic infections develop. Though patients on teclistamab are not expected to mount antibody responses to vaccination, vaccine-induced T cell responses have been observed and may be clinically protective.55

Haematologic toxicity is commonly observed. Grade 3 or 4 neutropenia, anaemia and thrombocytopenia were reported in 64.2%37.0% and 21.2% of trial participants, respectively. Of the 117 patients in whom neutropenia developed, 91 received granulocyte colony-stimulating factor therapy at the investigator’s discretion.13,50,51 In our experience, neutropenia with teclistamab is idiosyncratic, occurring intermittently throughout treatment, and can be successfully managed with occasional dose holding and the administration of filgrastim.

Efficacy correlations and drugdrug synergy

Various baseline immune, tumour and clinical factors are associated with the clinical efficacy of teclistamab. 52 In MajesTEC-1, response rates and progression-free survival correlated positively with recipient peripheral T cell counts and a naive CD8 T cell phenotype and inversely with burden of regulatory and exhausted (PD-1-, CD38-, and TIM-3-expressing) T cells.50 These findings are consistent with preclinical predictions56 and with associations seen in other TCE therapies, including BCMA CAR T.57–59 The depletion of naïve and earlymemory T cells, along with the increasing frequency of an exhausted immune phenotype, are common features of advanced MM and of heavily pretreated patients. The intrinsic reliance on host immunity raises the question of whether TCE therapies should be used in early lines of MM therapy rather than in the relapsed refractory setting, where their use is currently approved.

Teclistamab responders also had lower sBCMA concentrations, and elevated sBCMA (but not surface BCMA) was associated with worse disease (high-risk International Staging System scores and extramedullary involvement) and with a greater bone marrow PC cellularity.52 These features were associated with more baseline T cell dysfunction, and likely account for the lower response rates in patients with high tumour burden. Again, these findings challenge the current treatment paradigm and suggest the use of teclistamab in maintenance or other low-disease-burden setting, as investigated in the MajesTEC-4, MASTER-2 and Immuno-PRISM trials, may allow for long-lasting anti-tumour immunity (Table 1).1,51,60–71

Lastly, a preclinical study found that pretreatment with CD38 inhibition enhanced teclistamab activity in a synergistic manner, possibly due to the immunomodulatory effect of daratumumab in the tumour microenvironment,72–76 and its inhibition of nicotinamide adenine dinucleotidase activity, which, in turn, may avert T cell exhaustion.40,77 Daratumumab-lenalidomide synergism has been previously demonstrated.78 As such, various teclistamab-containing multidrug regimens are currently under investigation in newly diagnosed (MajesTEC-4,65 MajesTEC-7 [ClinicalTrials.gov identifier: NCT0555222268] and MASTER-2 [ClinicalTrials.gov identifier: NCT05231629]64), early (MajesTEC-3 [ClinicalTrials.gov identifier: NCT05083169]63 and MajesTEC-9 [ClinicalTrials.gov identifier: NCT05572515]69) and late relapsed settings (TRIMM-3 [ClinicalTrials.gov identifier: NCT05338775]66 and RedirecTT-1 [ClinicalTrials.gov identifier: NCT04586426]60) (Table 1). How and when these combinations are adopted will largely depend on the safety of the regimen and whether the progression-free and overall survival advantages outweigh the risk of incremental toxicity. For example, recently presented early results from MajesTEC-2 combining teclistamab with lenalidomide and daratumumab in patients with RRMM who had received 13 prior lines of therapy was highly efficacious but again associated with a high rate of infectious complications.61 In these early lines of therapy, responses are expected to be very durable, which would expose patients to cumulative immune suppression. Alternative dosing strategies in which teclistamab is administered for fixed durations, with intermittent re-dosing upon disease progression, may be important for safe use in early lines of therapy. Such intermittent dosing may also improve efficacy by alleviating T cell exhaustion associated with continuous administration.79

Treatment paradigms and discussion

TCE therapies for MM have evolved rapidly. Though CAR T cells demonstrated the most impressive single-agent response rates ever reported in RRMM just a couple of years ago, teclistamab now enables similar efficacy but with off-the-shelf availability and subcutaneous administration.9,11 Both CAR T cells and BsAb therapy continue to innovate. For example, abbreviated manufacturing protocols may improve both the efficacy and accessibility of CAR T cell therapy,80 and trispecific antibodies that enable dual-antigen specificity or that incorporate costimulatory or checkpoint-blocking domains are in development.81 Collectively, these are paradigm-shifting advances with the potential to add years to the survival of the typical patient with MM.

We do not yet know how best to use these agents in practice. Both CAR T cells and teclistamab are currently approved for patients with at least four prior lines of MM therapy; however, all these agents are being evaluated in earlier lines of MM therapy (Table 1).8,10,12 Meanwhile, non-TCE therapies continue to progress, notably with molecules such as iberdomide82 and mezigdomide,83 which build on lenalidomide’s mechanism of action, and novel immunotherapies such as modakafusp alfa, an anti-CD38 antibody-cytokine fusion protein.84 Extensive clinical investigation will be required to determine how to best sequence and combine these agents with current therapies; such studies will hopefully incorporate correlative studies to inform personalized treatment approaches.

Though it is tempting to contrast different TCE therapies, patients can receive both BsAb and CAR T cells sequentially. Teclistamab has been prospectively evaluated in a small cohort of patients previously treated with anti-BCMA CAR T cells or the anti-BCMA antibodydrug conjugate belantamab mafadotin; the response rate in these patients was only slightly lower than in patients who were naive to BCMA-directed therapy.85 Similarly, ciltacabtagene autoleucel has been prospectively studied after prior BCMA-directed therapy with promising results,86 and several retrospective reports have demonstrated efficacy with sequential BCMA-directed therapies.87–89

Although BCMA-negative relapses have been reported,90 most cases of progression after anti-BCMA CAR T cells do not appear related to antigenic escape.91 Continuously dosed BsAbs likely exert more durable target-directed immune surveillance than CAR T cells, which wane after several months in most RRMM patients.9,11 Target-negative relapse may, therefore, be more likely after BsAb therapy than CAR T cell therapy; however, this has not yet been evaluated. Patients progressing after BCMA-directed TCE therapy have been shown to respond to both BsAb and CAR T cells directed against GPRC5D.43,92,93

Our current approach to sequencing teclistamab and CAR T cells is driven by patient-specific factors, including patient preference either for a singledose, but more complex, CAR T cell approach or for the simpler, but continuously dosed, teclistamab. Patients with rapidly progressive RRMM now have teclistamab as a readily available option. However, teclistamab may still be preferred for patients with gradual and uncomplicated progression, depending on the accessibility of a cellular therapy centre and patient tolerance of CAR T cell toxicities and logistical requirements.

Finally, with all this exciting progress, we must not lose sight of the stubbornly high propensity for relapse that remains even after treatment with these potent novel therapies and of the high cost required to sustain years of sophisticated therapy in patients with MM. More focused research is required on the specific mechanisms of relapse and the biology of resistant disease that persists, often below detectable limits, and that presumably seeds future relapses. In addition, a nuanced clinical and translational investigation is required to understand when and for whom continuous therapy promotes long-term survival compared with more intermittent therapy.

Article Information:
Disclosure

Alfred L Garfall receives research funding from Novartis, Janssen, CRISPR Therapeutics and Tmunity; consulting/honoraria from Janssen, BMS, Legend Biotech and GSK; and IDMC membership for Janssen. Beatrice M Razzo has no financial or non-financial relationships or activities to declare in relation to this article.

Compliance With Ethics

This article involves a review of the literature and did not involve any studies with human or animal subjects performed by any of the authors.

Review Process

Double-blind peer review.

Authorship

The named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Correspondence

Dr Alfred L GarfallPerelman Center for Advanced Medicine12-173 South Pavilion Extension, 3400 Civic Center Blvd., PhiladelphiaPA 19104USAAlfred.Garfall@pennmedicine.upenn.edu

Support

No funding was received in the publication of this article.

Access

This article is freely accessible at touchONCOLOGY.com. © Touch Medical Media 2023

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the writing of this study.

Received

2023-03-27

References

1. Clinicaltrials.gov. Dose escalation study of teclistamab, a humanized BCMA*CD3 bispecific antibody, in participants with relapsed or refractory multiple myeloma (majesTEC-1). ClinicalTrials.gov identifier: NCT03145181Available athttps://clinicaltrials.gov/ct2/show/NCT03145181 (Date last accessed12 April 2023)

2. American Cancer SocietyKey statistics about multiple myelomaAvailable atwww.cancer.org/cancer/multiple-myeloma/about/key-statistics.html (Date last accessed21 April 2023)

3. Kumar SKDispenzieri ALacy MQet alContinued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patientsLeukemia2014;28:11228DOI10.1038/leu.2013.313

4. Turesson IBjorkholm MBlimark CHet alRapidly changing myeloma epidemiology in the general population: Increased incidence, older patients, and longer survivalEur J Haematol2018;101:23744DOI10.1111/ejh.13083

5. Ludwig HNovis Durie SMeckl Aet alMultiple myeloma incidence and mortality around the globe; interrelations between health access and quality, economic resources, and patient empowermentOncologist2020;25:e140613DOI10.1634/theoncologist.2020-0141

6. D’Agostino MCairns DALahuerta JJet alSecond revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: A European Myeloma Network (EMN) report within the Harmony projectJ Clin Oncol2022;40:340618DOI10.1200/JCO.21.02614

7. Gandhi UHCornell RFLakshman Aet alOutcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapyLeukemia2019;33:226675DOI10.1038/s41375-019-0435-7

8. US Food and Drug AdministrationFDA APPROVES Idecabtagene Vicleucel for multiple myelomaAvailable atwww.fda.gov/drugs/resources-information-approved-drugs/fda-approves-idecabtagene-vicleucel-multiple-myeloma (Date last accessed21 April 2023)

9. Munshi NCAnderson LD Jr Shah Net alIdecabtagene vicleucel in relapsed and refractory multiple myelomaN Engl J Med2021;384:70516DOI10.1056/NEJMoa2024850

10. US Food and Drug Administration. FDA approves ciltacabtagene autoluecel for relapsed or refractory multiple myeloma . Available atwww.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ciltacabtagene-autoleucel-relapsed-or-refractory-multiple-myeloma (Date last accessed21 April 2023)

11. Berdeja JGMadduri DUsmani SZet alCiltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label studyLancet2021;398:31424DOI10.1016/S0140-6736(21)00933-8

12. US Food and Drug Administration. FDA approves teclistamab-cqyv for relapsed or refractory multiple myelomaAvailable atwww.fda.gov/drugs/resources-information-approved-drugs/fda-approves-teclistamab-cqyv-relapsed-or-refractory-multiple-myeloma (Date last accessed21 April 2023)

13. Moreau PGarfall ALvan de Donk Net alTeclistamab in relapsed or refractory multiple myelomaN Engl J Med2022;387:495505DOI10.1056/NEJMoa2203478

14. Laabi YGras MPBrouet JCet alThe BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribedNucleic Acids Res1994;22:114754DOI10.1093/nar/22.7.1147

15. Carpenter ROEvbuomwan MOPittaluga Set alB-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myelomaClin Cancer Res2013;19:204860DOI10.1158/1078-0432.CCR-12-2422

16. Tai YTMayes PAAcharya Cet alNovel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myelomaBlood2014;123:312838DOI10.1182/blood-2013-10-535088

17. Van Oekelen OAleman AUpadhyaya Bet alNeurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapyNat Med2021;27:2099103DOI10.1038/s41591-021-01564-7

18. Bu D-XSingh RChoi EEet alPre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myelomaOncotarget2018;9:2576480DOI10.18632/oncotarget.25359

19. Marella MYao XCarreira Vet alComprehensive BCMA expression profiling in adult normal human brain suggests a low risk of on-target neurotoxicity in BCMA-targeting multiple myeloma therapyJ Histochem Cytochem2022;70:27387DOI10.1369/00221554221079579

20. Eckhert EHewitt RLiedtke MB-cell maturation antigen directed monoclonal antibody therapies for multiple myelomaImmunotherapy2019;11:80111DOI10.2217/imt-2018-0199

21. Romano AStorti PMarchica Vet alMechanisms of action of the new antibodies in use in multiple myelomaFront Oncol2021;11:684561DOI10.3389/fonc.2021.684561

22. Peperzak VVikström IWalker Jet alMcl-1 is essential for the survival of plasma cellsNat Immunol2013;14:2907DOI10.1038/ni.2527

23. Bossen CCachero TGTardivel Aet alTACI, unlike BAFF-R, is solely activated by oligomeric BAFF and April to support survival of activated B cells and plasmablastsBlood2008;111:100412DOI10.1182/blood-2007-09-110874

24. Hatzoglou ARoussel JBourgeade MFet alTNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, Elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinaseJ Immunol2000;165:132230DOI10.4049/jimmunol.165.3.1322

25. O’Connor BPRaman VSErickson LDet alBCMA is essential for the survival of long-lived bone marrow plasma cellsJ Exp Med2004;199:918DOI10.1084/jem.20031330

26. Tai Y-TAcharya CAn Get alApril and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironmentBlood2016;127:322536DOI10.1182/blood-2016-01-691162

27. Castigli EWilson SAScott Set alTACI and BAFF-R mediate isotype switching in B cellsJ Exp Med2005;201:359DOI10.1084/jem.20032000

28. Laurent SAHoffmann FSKuhn P-Het alΓ-Secretase directly sheds the survival receptor BCMA from plasma cellsNat Commun2015;6:7333DOI10.1038/ncomms8333

29. Sanchez EGillespie ATang Get alSoluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myelomaClin Cancer Res2016;22:338397DOI10.1158/1078-0432.CCR-15-2224

30. Claudio JOMasih-Khan ETang Het alA molecular compendium of genes expressed in multiple myelomaBlood2002;100:217586DOI10.1182/blood-2002-01-0008

31. Annunziata CMDavis REDemchenko Yet alFrequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myelomaCancer Cell2007;12:11530DOI10.1016/j.ccr.2007.07.004

32. Sanchez ELi MKitto Aet alSerum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survivalBr J Haematol2012;158:72738DOI10.1111/j.1365-2141.2012.09241.x

33. Ryan MCHering MPeckham Det alAntibody targeting of B-cell maturation antigen on malignant plasma cellsMol Cancer Ther2007;6:300918DOI10.1158/1535-7163.MCT-07-0464

34. Lejeune MKöse MCDuray Eet alBispecific, T-cell-recruiting antibodies in B-cell malignanciesFront Immunol2020;11:762DOI10.3389/fimmu.2020.00762

35. Perez PHoffman RWShaw Set alSpecific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibodyNature1985;316:3546DOI10.1038/316354a0

36. De Gast GCVan Houten AAHaagen IAet alClinical experience with CD3 x CD19 bispecific antibodies in patients with B cell malignanciesJ Hematother1995;4:4337DOI10.1089/scd.1.1995.4.433

37. Kantarjian HStein AGökbuget Net alBlinatumomab versus chemotherapy for advanced acute lymphoblastic leukemiaN Engl J Med2017;376:83647DOI10.1056/NEJMoa1609783

38. Hipp STai Y-TBlanset Det alA novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivoLeukemia2017;31:2278DOI10.1038/leu.2017.219

39. Topp MSDuell JZugmaier Get alAnti-B-cell maturation antigen bite molecule AMG 420 induces responses in multiple myelomaJ Clin Oncol2020;38:77583DOI10.1200/JCO.19.02657

40. Verkleij CPMFrerichs KABroekmans Met alT-cell redirecting bispecific antibodies targeting BCMA for the treatment of multiple myelomaOncotarget2020;11:407681DOI10.18632/oncotarget.27792

41. Moreau PTouzeau CT-cell-redirecting bispecific antibodies in multiple myeloma: A revolution? Blood2022;139:36817DOI10.1182/blood.2021014611

42. ClinicalTrials.gov. Dose Escalation Study of Talquetamab in Participants With Relapsed or Refractory Multiple Myeloma (MonumenTAL-1)Available athttps://clinicaltrials.gov/ct2/show/NCT03399799 (Date last accessed21 April 2023)

43. Chari AMinnema MCBerdeja JGet alTalquetamab, a T-cell–redirecting GPRC5D bispecific antibody for multiple myelomaN Engl J Med2022;387:223244DOI10.1056/NEJMoa2204591

44. ClinicalTrials.gov. A Study of Subcutaneous Daratumumab Regimens in Combination With Bispecific T Cell Redirection Antibodies for the Treatment of Participants With Multiple MyelomaAvailable athttps://clinicaltrials.gov/ct2/show/NCT04108195 (Date last accessed21 April 2023)

45. Cohen YCMoreau PTolbert Jet alMonumenTAL-3: phase 3 trial of talquetamab + daratumumab ± pomalidomide versus daratumumab + pomalidomide + dexamethasone in relapsed/refractory multiple myeloma following ≥1 prior line of therapyBlood2022;140:44189DOI10.1182/blood-2022-162733

46. ClinicalTrials.gov. A Study of Talquetamab With Other Anticancer Therapies in Participants With Multiple Myeloma (MonumenTAL-2)Available athttps://clinicaltrials.gov/ct2/show/NCT05050097 (Date last accessed21 April 2023)

47. Trudel SCohen ADKrishnan AYet alCevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): Updated results from an ongoing phase I studyBlood2021;138:157DOI10.1182/blood-2021-147983

48. Pillarisetti KBaldwin EBabich Aet alDevelopment of a new BCMAxCD3 DuoBody® antibody for multiple myelomaBlood2016;128:2116DOI10.1182/blood.V128.22.2116.2116

49. Pillarisetti KPowers GLuistro Let alTeclistamab is an active T cell-redirecting bispecific antibody against B-cell maturation antigen for multiple myelomaBlood Adv2020;4:453849DOI10.1182/bloodadvances.2020002393

50. Usmani SZGarfall ALvan de Donk NWCJet alTeclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (majesTEC-1): A multicentre, open-label, single-arm, phase 1 studyLancet2021;398:66574DOI10.1016/S0140-6736(21)01338-6

51. ClinicalTrials.gov. A Study of Teclistamab in Participants With Relapsed or Refractory Multiple Myeloma (MajesTEC-1). ClinicalTrials.gov Identifier: NCT04557098Available athttps://clinicaltrials.gov/ct2/show/NCT04557098 (Date last accessed12 April 2023)

52. Cortes-Selva DCasneuf TVishwamitra Det alTeclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Correlative analyses from majesTEC-1Blood2022;140:2413DOI10.1182/blood-2022-162709

53. US Food and Drug Administration TECVAYLI highlights of Prescribing informationAvailable atwww.accessdata.fda.gov/drugsatfda_docs/label/2022/761291s000lbl.pdf (Date last accessed21 April 2023)

54. Food and drug administrationAvailable athttps://www.google.com/search?q=teclistamab+prescribing+information&rlz=1C1CHBF_enGB869GB869&oq=teclistamab+prescribing+information&aqs=chrome..69i57j0i22i30.3382j0j7&sourceid=chrome&ie=UTF-8&bshm=bshwcqp/1 (Date last accessed26 April 2023)

55. Aleman AUpadhyaya BTuballes Ket alVariable cellular responses to SARS-CoV-2 in fully vaccinated patients with multiple myelomaCancer Cell2021;39:14424DOI10.1016/j.ccell.2021.09.015

56. Frerichs KABroekmans MECMarin Soto JAet alPreclinical activity of JNJ-7957, a novel BCMA×CD3 bispecific antibody for the treatment of multiple myeloma, is potentiated by daratumumabClin Cancer Res2020;26:220315DOI10.1158/1078-0432.CCR-19-2299

57. Cohen ADGarfall ALStadtmauer EAet alB cell maturation antigen–specific CAR T cells are clinically active in multiple myelomaJ Clin Invest2019;129:221021DOI10.1172/JCI126397

58. Garfall ALDancy EKCohen ADet alT-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myelomaBlood Adv2019;3:28125DOI10.1182/bloodadvances.2019000600

59. Leblay NMaity RBarakat Eet alCite-seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or bites immunotherapyBlood2020;136:112DOI10.1182/blood-2020-137650

60. ClinicalTrials.gov. A Study of the Combination of Talquetamab and Teclistamab in Participants With Relapsed or Refractory Multiple Myeloma (RedirecTT-1). ClinicalTrials.gov Identifier: NCT04586426Available athttps://clinicaltrials.gov/ct2/show/NCT04586426 (Date last accessed12 April 2023)

61. Searle EQuach HWong SWet alTeclistamab in combination with subcutaneous daratumumab and lenalidomide in patients with multiple myeloma: Results from one cohort of majesTEC-2, a phase1b, multicohort studyBlood2022;140:3946DOI10.1182/blood-2022-159711

62. ClinicalTrials.gov. A Study of the Combination of Talquetamab and Teclistamab in Participants With Relapsed or Refractory Multiple Myeloma (RedirecTT-1). ClinicalTrials.gov Identifier: NCT04722146Available athttps://clinicaltrials.gov/ct2/show/NCT04722146 (Date last accessed12 April 2023)

63. ClinicalTrials.gov. Study of Teclistamab in Combination With Daratumumab Subcutaneously (SC) (Tec-Dara) Versus Daratumumab SC, Pomalidomide, and Dexamethasone (DPd) or Daratumumab SC, Bortezomib, and Dexamethasone (DVd) in Participants With Relapsed or Refractory Multiple Myeloma (MajesTEC-3). ClinicalTrials.gov Identifier: NCT05083169Available athttps://clinicaltrials.gov/ct2/show/NCT05083169 (Date last accessed12 April 2023)

64. ClinicalTrials.gov. A Sequential Therapy in Multiple Myeloma Guided by MRD Assessments (MASTER-2). ClinicalTrials.gov Identifier: NCT05231629Available athttps://clinicaltrials.gov/ct2/show/NCT05231629 (Date last accessed12 April 2023)

65. ClinicalTrials.gov. Phase 3 Study of Teclistamab in Combination With Lenalidomide and Teclistamab Alone Versus Lenalidomide Alone in Participants With Newly Diagnosed Multiple Myeloma as Maintenance Therapy Following Autologous Stem Cell Transplantation (MajesTEC-4). ClinicalTrials.gov Identifier: NCT05243797Available athttps://clinicaltrials.gov/ct2/show/NCT05243797 (Date last accessed12 April 2023)

66. ClinicalTrials.gov. A Study of Talquetamab and Teclistamab Each in Combination With a Programmed Cell Death Receptor-1 (PD-1) Inhibitor for the Treatment of Participants With Relapsed or Refractory Multiple Myeloma (TRIMM-3). ClinicalTrials.gov Identifier: NCT05338775Available athttps://clinicaltrials.gov/ct2/show/NCT05338775 (Date last accessed12 April 2023)

67. ClinicalTrials.gov. Immuno-PRISM (PRecision Intervention Smoldering Myeloma). ClinicalTrials.gov Identifier: NCT05469893Available athttps://clinicaltrials.gov/ct2/show/NCT05469893 (Date last accessed12 April 2023)

68. ClinicalTrials.gov. A Study to Compare Teclistamab in Combination With Daratumumab and Lenalidomide (Tec-DR) in Participants With Newly Diagnosed Multiple Myeloma (MajesTEC-7). ClinicaltTials.gov Identifier: NCT05552222Available athttps://clinicaltrials.gov/ct2/show/NCT05552222 (Date last accessed12 April 2023)

69. ClinicalTrials.gov. A Study Comparing Teclistamab Monotherapy Versus Pomalidomide, Bortezomib, Dexamethasone (PVd) or Carfilzomib, Dexamethasone (Kd) in Participants With Relapsed or Refractory Multiple Myeloma (MajesTEC-9). ClinicalTrials.gov Identifier: NCT05572515Available athttps://clinicaltrials.gov/ct2/show/NCT05572515 (Date last accessed12 April 2023)

70. ClinicalTrials.gov. Study of Teclistamab in Combination in Elderly Patients With Multiple Myeloma (IFM 2021-01). ClinicalTrials.gov Identifier: NCT05572229. . Available athttps://clinicaltrials.gov/ct2/show/NCT05572229 (Date last accessed12 April 2023)

71. ClinicalTrials.gov. GMMG-HD10 / DSMM-XX / 64007957MMY2003, MajesTEC-5 (HD10/DSMMXX). ClinicalTrials.gov Identifier: NCT05695508Available athttps://clinicaltrials.gov/ct2/show/NCT05695508 (Date last accessed12 April 2023)

72. Adams HVan der Borght KAbraham Yet alEffects of daratumumab on the composition and activation status of immune-cell populations in Centaurus, a phase 2 randomized study of smoldering multiple myeloma (SMM) patientsPresented at: EHA 2018, Stockholm, Sweden, 14-17 June 2018. S1577.

73. Adams HC IIIStevenaert FKrejcik Jet alHigh‐parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of actionCytometry2019;95:27989DOI10.1002/cyto.a.23693

74. Krejcik JCasneuf TNijhof ISet alDaratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myelomaBlood2016;128:38494DOI10.1182/blood-2015-12-687749

75. van de Donk NWCJImmunomodulatory effects of CD38-targeting antibodiesImmunol Lett2018;199:1622DOI10.1016/j.imlet.2018.04.005

76. Van De Donk NWAdams HVanhoof Get alDaratumumab in combination with lenalidomide plus dexamethasone results in persistent natural killer (NK) cells with a distinct phenotype and expansion of effector memory T-cells in pollux, a phase 3 randomized studyBlood2017;130:3124DOI10.1182/blood.V130.Suppl_1.3124.3124

77. Chatterjee SDaenthanasanmak AChakraborty Pet alCD38-NAD+ axis regulates immunotherapeutic anti-tumor T cell responseCell Metab2018;27:85100DOI10.1016/j.cmet.2017.10.006

78. van der Veer MSde Weers Mvan Kessel Bet alTowards effective immunotherapy of myeloma: Enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumabHaematologica2011;96:28490DOI10.3324/haematol.2010.030759

79. Philipp NKazerani MNicholls Aet alT-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervalsBlood2022;140:110418DOI10.1182/blood.2022015956

80. Costa LJKumar SKAtrash Set alResults from the first phase 1 clinical study of the B-cell maturation antigen (BCMA) nex T chimeric antigen receptor (CAR) T cell therapy CC-98633/BMS-986354 in patients (pts) with relapsed/refractory multiple myeloma (RRMM)Blood2022;140:13602DOI10.1182/blood-2022-160038

81. Garfall ALJune CHTrispecific antibodies offer a third way forward for anticancer immunotherapyNature2019;575:4501DOI10.1038/d41586-019-03495-3

82. Lonial SPopat RHulin Cet alIberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): A multicentre, multicohort, open-label, phase 1/2 trialLancet Haematol2022;9:e82232DOI10.1016/S2352-3026(22)00290-3

83. Richardson PGTrudel SQuach Het alMezigdomide (CC-92480), a potent, novel cereblon E3 ligase modulator (CELMoD), combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Preliminary results from the dose-expansion phase of the CC-92480-MM-001 trialBlood2022;140:13668DOI10.1182/blood-2022-157945

84. Vogl DTAtrash SHolstein SAet alFinal results from the first-in-human phase 1/2 study of modakafusp alfa, an immune-targeting attenuated cytokine, in patients (pts) with relapsed/refractory multiple myeloma (RRMM)Blood2022;140:13579DOI10.1182/blood-2022-162253

85. Touzeau CKrishnan AYMoreau Pet alEfficacy and safety of teclistamab (tec), a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients (pts) with relapsed/refractory multiple myeloma (RRMM) after exposure to other BCMA-targeted agentsJ Clin Oncol2022;40:8013DOI10.1200/JCO.2022.40.16_suppl.8013

86. Cohen ADMateos M-VCohen YCet alEfficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agentsBlood2023;141:21930DOI10.1182/blood.2022015526

87. Oliver Van Oekelen KNTarek HMMouhieddine THet alInterventions and outcomes of patients with multiple myeloma receiving salvage therapy after BCMA-directed CAR T therapyBlood2023;141:75665DOI10.1182/blood.2022017848/1928339/blood.2022017848.pdf

88. Cohen ADGarfall ALDogan Aet alSerial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapiesBlood Adv2019;3:248790DOI10.1182/bloodadvances.2019000466

89. Gazeau NBeauvais DYakoub-Agha Iet alEffective anti-BCMA retreatment in multiple myelomaBlood Adv2021;5:301620DOI10.1182/bloodadvances.2021004176

90. Da Vià MCDietrich OTruger Met alHomozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myelomaNat Med2021;27:6169DOI10.1038/s41591-021-01245-5

91. Martin NThompson EDell’Aringa Jet alCorrelation of tumor BCMA expression with response and acquired resistance to idecabtagene vicleucel in the karMMa study in relapsed and refractory multiple myelomaPresented at: EHA 2020, virtual, 11-21 June 2020. EP985.

92. Mailankody SDelvin SMLanda JGPRC5D-targeted CAR T cells for myelomaN Engl J Med2022;387:1196206DOI10.1056/NEJMc2213985

93. Mouhieddine THVan Oekelen OMelnekoff DTet alSequencing T-cell redirection therapies leads to deep and durable responses in relapsed/refractory myeloma patientsBlood Adv2022;7:105664DOI10.1182/bloodadvances.2022007923

Further Resources

Share this Article
Related Content In Multiple Myeloma
  • Copied to clipboard!
    accredited arrow-down-editablearrow-downarrow_leftarrow-right-bluearrow-right-dark-bluearrow-right-greenarrow-right-greyarrow-right-orangearrow-right-whitearrow-right-bluearrow-up-orangeavatarcalendarchevron-down consultant-pathologist-nurseconsultant-pathologistcrosscrossdownloademailexclaimationfeedbackfiltergraph-arrowinterviewslinkmdt_iconmenumore_dots nurse-consultantpadlock patient-advocate-pathologistpatient-consultantpatientperson pharmacist-nurseplay_buttonplay-colour-tmcplay-colourAsset 1podcastprinter scenerysearch share single-doctor social_facebooksocial_googleplussocial_instagramsocial_linkedin_altsocial_linkedin_altsocial_pinterestlogo-twitter-glyph-32social_youtubeshape-star (1)tick-bluetick-orangetick-red tick-whiteticktimetranscriptup-arrowwebinar Sponsored Department Location NEW TMM Corporate Services Icons-07NEW TMM Corporate Services Icons-08NEW TMM Corporate Services Icons-09NEW TMM Corporate Services Icons-10NEW TMM Corporate Services Icons-11NEW TMM Corporate Services Icons-12Salary £ TMM-Corp-Site-Icons-01TMM-Corp-Site-Icons-02TMM-Corp-Site-Icons-03TMM-Corp-Site-Icons-04TMM-Corp-Site-Icons-05TMM-Corp-Site-Icons-06TMM-Corp-Site-Icons-07TMM-Corp-Site-Icons-08TMM-Corp-Site-Icons-09TMM-Corp-Site-Icons-10TMM-Corp-Site-Icons-11TMM-Corp-Site-Icons-12TMM-Corp-Site-Icons-13TMM-Corp-Site-Icons-14TMM-Corp-Site-Icons-15TMM-Corp-Site-Icons-16TMM-Corp-Site-Icons-17TMM-Corp-Site-Icons-18TMM-Corp-Site-Icons-19TMM-Corp-Site-Icons-20TMM-Corp-Site-Icons-21TMM-Corp-Site-Icons-22TMM-Corp-Site-Icons-23TMM-Corp-Site-Icons-24TMM-Corp-Site-Icons-25TMM-Corp-Site-Icons-26TMM-Corp-Site-Icons-27TMM-Corp-Site-Icons-28TMM-Corp-Site-Icons-29TMM-Corp-Site-Icons-30TMM-Corp-Site-Icons-31TMM-Corp-Site-Icons-32TMM-Corp-Site-Icons-33TMM-Corp-Site-Icons-34TMM-Corp-Site-Icons-35TMM-Corp-Site-Icons-36TMM-Corp-Site-Icons-37TMM-Corp-Site-Icons-38TMM-Corp-Site-Icons-39TMM-Corp-Site-Icons-40TMM-Corp-Site-Icons-41TMM-Corp-Site-Icons-42TMM-Corp-Site-Icons-43TMM-Corp-Site-Icons-44TMM-Corp-Site-Icons-45TMM-Corp-Site-Icons-46TMM-Corp-Site-Icons-47TMM-Corp-Site-Icons-48TMM-Corp-Site-Icons-49TMM-Corp-Site-Icons-50TMM-Corp-Site-Icons-51TMM-Corp-Site-Icons-52TMM-Corp-Site-Icons-53TMM-Corp-Site-Icons-54TMM-Corp-Site-Icons-55TMM-Corp-Site-Icons-56TMM-Corp-Site-Icons-57TMM-Corp-Site-Icons-58TMM-Corp-Site-Icons-59TMM-Corp-Site-Icons-60TMM-Corp-Site-Icons-61TMM-Corp-Site-Icons-62TMM-Corp-Site-Icons-63TMM-Corp-Site-Icons-64TMM-Corp-Site-Icons-65TMM-Corp-Site-Icons-66TMM-Corp-Site-Icons-67TMM-Corp-Site-Icons-68TMM-Corp-Site-Icons-69TMM-Corp-Site-Icons-70TMM-Corp-Site-Icons-71TMM-Corp-Site-Icons-72